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Motion Capture with Ellipsoidal Skeleton
using Multiple Depth Cameras

Liang Shuai, Chao Li, Xiaohu Guo, Balakrishnan Prabhakaran, and Jinxiang Chai

Abstract—This paper introduces a novel motion capturing framework which works by minimizing the fitting error between an ellipsoid
based skeleton and the input point cloud data captured by multiple depth cameras. The novelty of this method comes from that it uses
the ellipsoids equipped with the spherical harmonics encoded displacement and normal functions to capture the geometry details of
the tracked object. This method is also integrated with a mechanism to avoid collisions of bones during the motion capturing process.
The method is implemented parallelly with CUDA on GPU and has a fast running speed without dedicated code optimization. The
errors of the proposed method on the data from Berkeley Multimodal Human Action Database (MHAD) are within a reasonable range
compared with the ground truth results. Our experiment shows that this method succeeds on many challenging motions which are
failed to be reported by Microsoft Kinect SDK and not tested by existing works. In the comparison with the state-of-art marker-less
depth camera based motion tracking work our method shows advantages in both robustness and input data modality.

Index Terms—Motion Capture, Skeleton Tracking, Depth Sensing, Ellipsoidal Skeleton
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1 INTRODUCTION

THE motion capturing (or tracking) problem is useful
in many applications such as computer animation and

tele-immersion system. There are two major types of motion
capturing methods, the marker based methods and marker-
less methods. The marker based methods are accurate, but
the equipments used are usually expensive and require spe-
cial uniform with optical markers on the tracked object. The
marker-less methods only utilize the data from affordable
multi-view or depth cameras. Although the accuracy of this
kind of methods is limited, it is popular due to its low cost
and high usability.

There are two major categories of the marker-less mo-
tion tracking methods, the machine learning based and
registration based methods. The machine learning based
methods usually formulate the pose tracking problem as a
per-pixel labeling problem, and solve it by applying some
classification frameworks. Several probabilistic models have
been applied, including the Gaussian Process (GP) [1],
Markov Random Fields (MRFs) [2], Markov Chain Monte
Carlo (MCMC) [3], and randomized decision tree [4], etc.
The computation time for such kind of methods is usually
short and with small variance, but the disadvantage is that
without large and comprehensive training data sets these
methods may fail.

The registration based methods use templates to repre-
sent the tracked objects and attempt to align the templates
with the observed data by minimizing certain energy func-
tions. The templates here can be articulated simple objects
(such as cylinder or box) [5], [6], [7], or triangular meshes
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[8], [9], [10]. The articulated simple objects do not capture
the geometry details of the tracked objects thus limit the
motion tracking accuracy. The triangular meshes capture
the geometry details better, but computing the deformation
of triangular meshes is time-consuming. There are also
methods using cylinders attached with isotropic Gaussian
functions to approximate the geometry of tracked object
[11], [12]. Our idea is similar to this but we use spherical
harmonics functions equipped ellipsoids and experiment
shows this method can approximate the geometry more
precisely (see section 3.2).

In this paper a novel registration based motion capturing
method is developed for multiple depth cameras (Microsoft
Kinects and Kinect v2s). To overcome the limitations of both
the triangular mesh model and simple articulated model
described above, the proposed method uses a skeleton con-
sists of articulated ellipsoids equipped with displacement
and normal information to capture the geometry details
of the tracked object. In order to deal with the occlusion
problem multiple depth cameras are used to capture the
full body motion data. This method only uses the depth
image for motion tracking, yet still having a high accuracy
in most cases. The main contributions of this work can be
summarized as follows:

1) A novel ellipsoid-based skeleton is designed such
that the geometry detail of the tracked object can be
well captured, which makes the proposed motion
capturing method accurate and robust.

2) The proposed motion tracking method only uses the
depth information of the tracked object and is for-
mulated as a pure energy optimization, without any
other modalities of data or training data needed.

3) The experiment shows that the proposed method
succeeds on many challenging motions which are
not captured by the Kinect SDK and not tested in
literatures.
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2 RELATED WORK

2.1 Motion Tracking
Recently, the field of marker-less motion capturing has made
great progress, especially with the wide use of Microsoft
Kinect. The motion capturing method provided in Kinect
SDK [13] is a typical machine learning based method. It
infers the body part to which each depth image pixel be-
longs based on randomized decision forests trained with a
large and highly varied depth image data set. Girshick et
al. [14] presented another regression forest-based method
for detecting human poses from single depth or silhouette
image. These machine learning based methods are highly
relied on the training data.

The registration based motion tracking methods are usu-
ally based on the Iterative Closest Point (ICP) technique [5],
[15], [16]. Due to its sensitivity to initial poses and proneness
to local minimum, the ICP method often fails to track human
motions as illustrated in [7], [17]. Wei et al. [7] introduces the
Maximum A Posteriori (MAP) framework for registration
and recovers the tracking failure with a method similar to
[13], but their method still fails in some cases with occlu-
sions or fast movements. Zhang et al. [17] uses triangular
mesh to model the tracked object and computes the the
signed distance filed (SDF) from the mesh for registration,
with the help of pressure sensor data on foot to alleviate the
effect of data noise on the tracking result.

There exist some optimization frameworks [6], [7] which
measure the fitting errors on the projected 2D images. These
methods can also take the silhouette information as an
important clue for finding correspondences [18]. However,
such methods usually work with a single camera thus
suffer from occlusions. Ye et al. [19] presents an algorithm
to recover human skeleton, body geometry and camera
poses simultaneously with multiple handheld Kinects, but
no complex motions are shown in the paper and the op-
timizing time is around 10 seconds per frame due to the
computational complexity.

There are also different modalities of the source data
used by various motion capturing methods, including the
depth image only [20], both the color and depth images [21],
and even depth image and motion sensor data [17], [22]. The
more data modalities involved the tracking system can be
more robust, yet more efforts need to be taken to handle the
potential calibration errors between different types of data.

2.2 Skeleton Rigging and Extraction
In skeleton rigging, the goal is to change the size and pose of
the given skeleton to fit with the target model [23], [24], [25].
Baran and Popović [23] described an automatic skeleton
rigging method, in which the input model is approximated
with medial surface and packed with spheres first, then
a geometric graph is constructed for skeleton posing. In
skeleton extraction, the major task is to deduce a proper
topology of the skeleton for the given model, along with
proper bone sizes and poses [26], [27], [28]. Lu et al. [26]
proposed a method to compute the ellipsoidal bounding
volumes for 3D object, thus the optimal segmentation and
the skeleton of the object can be computed.

In our motion tracking framework, the initialization
phase requires the skeleton to be well aligned with one

frame of the input data. Currently this process is done man-
ually, but we believe with the skeleton rigging technique
like [23] this can be done automatically. The topology of our
skeleton is also pre-defined since we only work with human
body tracking in the experiment. But if some other objects
are going to be tracked the skeleton extraction methods
like [26] can also provide a fast approach to determine the
skeleton topologies.

2.3 Ellipsoid and Spherical Harmonics

As introduced earlier our method uses an ellipsoidal bone
based skeleton model, rather than cylinder or cube based
skeletons as in traditional methods [6], [7]. One advantage
of ellipsoid over cube or cylinder is that it can approximate
the shape better as illustrated in some existing works [29],
[30]. Another reason we choose ellipsoid as the represen-
tation of bones is that we can use spherical harmonics to
encode the surface displacement and normal information
for ellipsoidal bones since the ellipsoid can be easily scaled
into a unit sphere, on which the spherical harmonics are
defined. Similar usage of the spherical harmonics can also
be found in some other research problems [31], [32].

3 ALGORITHMS

3.1 Ellipsoidal Skeleton

In computer animation a skeleton is usually defined as a
set of line segments (bones) and their connections (joints).
The problem with line segment is that it cannot represent
the geometry information of the corresponding body part.
Since we treat the motion tracking problem as a fitting
process between the skeleton and point cloud, it becomes
necessary for each bone in the skeleton to capture certain
geometry information such as displacement and normal.
To deal with this problem we define the ellipsoidal skeleton
S = (B, C), where B is a collection of ellipsoids representing
the bones, and C is a collection of vector pairs representing
the joints. Before discussing the detail of how the geometry
information is captured through the ellipsoidal skeleton, we
firstly introduce some related definitions in the following.

The equation of an arbitrary ellipsoid in Cartesian coor-
dinate system is:

‖SR(x− p)‖2 = 1, (1)

where x serves as the variable representing an arbitrary
point on the ellipsoid surface, p is the center of the ellipsoid,
S and R are 3× 3 scaling and rotation matrices correspond-
ingly. The scaling matrix S is determined by the axis lengths
of the ellipsoid, denoted by a, b, and c:

S =

 1/a
1/b

1/c

 . (2)

The rotation matrix R gives the orientation of the ellip-
soid. It represents such a rotation that aligns the ellipsoid
axes of length a, b, and c with the coordinate system axes x,
y, and z correspondingly.

Through Eq. (1) it is obvious that an ellipsoid can be
determined by its center p, scaling matrix S and rotation
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matrix R. So the collection of ellipsoidal bones can be
represented as:

B = {(pj ,Rj ,Sj) | for each bone j} (3)

The bones in our ellipsoidal skeleton are connected
through constraint vectors. The constraint vector is a vector
defined in the local coordinate system of the ellipsoidal bone,
which is aligned with the three axes of the ellipsoid. If two
bones, centered at p1 and p2 as in Fig. 1, are connected at
joint q, their constraint vectors v̄1 and v̄2 should point from
p1 and p2 to q correspondingly. In other words, the two
constraint vectors fulfill the following equation in the global
coordinate system:

p1 + R>1 v̄1 = p2 + R>2 v̄2. (4)

Here R> means to transform (rotate) the constraint vec-
tor from its local coordinate system to the global coordinate
system. Defining the constraint vector in its local coordinate
system makes it an invariant with respect to the position
and orientation of the bone. So the joints of the ellipsoidal
skeleton can be defined as a collection of constraint vector
pairs:

C = {(v̄k,l, v̄k,r) | for each joint k connecting bone l and r}.
(5)

 
 

 

 
 

Fig. 1: Ellipsoidal skeleton: bones and constraints.

Choosing Degree of Freedom (DOF). To animate the
ellipsoidal skeleton proper DOFs can be chosen for the bone
centers {pj} and rotation matrices {Rj}, while keeping the
bone sizes {Sj} and constraint vectors {(v̄k,l, v̄k,r)} fixed.
The bone center p is a point in 3D space so it has 3 DOFs,
which can be represented by its Cartesian coordinates p =
(x, y, z)>. A rotation in 3D space also has 3 DOFs, which can
be represented by the Tait-Bryan angles R = R(α, β, γ). So
the maximal DOFs of the animated ellipsoidal skeleton is
the number of bones multiplied by 6.

Note that the DOFs for p and R are not independent
if the bones satisfy the joint constraints Eq. (4). But in our
framework the joint constraints are not strictly enforced,
which means the joint positions of two connected bones do
not necessarily coincide. They are allowed to be apart within
a certain range if a better pose fitting can be obtained. This
situation may happen, because in most practical cases the
joint positions can not be determined precisely.

The rotation matrix Rj in the ellipsoidal bone definition
Eq. (3) represents the rotation from the global coordinate
system to the local coordinate system of bone j. A more
reasonable way in human body animation to define the
rotations of bones is through a hierarchical structure, in
which the bones are organized hierarchically according to
the real human body structure. In this case the rotation

of each bone can be defined as the one from its parent’s
local coordinate system to its own local coordinate system,
referred as R′j . If the path in the skeleton hierarchy from the
root bone 0 to bone j follows 0, ..., j, then there exists the
chained rotation relationship:

Rj = R′jR
′
j−1...R

′
0. (6)

Notice R′0 here means the rotation from the global coor-
dinate system to the local coordinate system of bone 0. With
this hierarchial rotation, not all the bones have 3 DOFs in
human body animation according to the real human joint
structure. For example, the knee only has 1 DOF. So the
hierarchial definition of rotation can reduce the DOFs of the
skeleton. The trade-off is that more computation is needed
for the chained rotation multiplication.

3.2 Geometry Fitting

As we introduced earlier the ellipsoidal skeleton will cap-
ture the geometry information of the tracked object (usually
point cloud data). The axis lengths of an ellipsoid can be
adjusted to fit the shape of the corresponding part of the
tracked object, and this can provide good approximations
for some body parts, for example the arms. In order to
provide a better approximation for the surface shape of the
tracked object, we define the displacement function with
spherical harmonics on the ellipsoidal bone as follows.

According to the theory of spherical harmonics, the
Laplace’s spherical harmonics Y m

l form an orthonormal
basis for the square-integrable functions defined on the
unit sphere. In other words, any square-integrable function
f(θ, ϕ) defined on the unit sphere can be expanded as a lin-
ear combination of the real part of the spherical harmonics:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, ϕ), (7)

where Ylm(θ, ϕ) is the real part of the spherical harmonic
function of degree l and order m, and flm is the correspond-
ing spherical harmonic coefficient.

The displacement functions can be defined with spheri-
cal harmonics on our ellipsoidal bones to better approximate
the shapes of the fitted object. The displacement function is
defined in the local coordinate system of the corresponding
ellipsoidal bone. For an arbitrary point xi on the fitted
object surface, firstly it will be assigned to a particular bone
j (pj ,Rj ,Sj) based on certain criteria (to be introduced
shortly). Then xi will be transformed into the local coordi-
nate system of bone j through a translation and a rotation:

x′i,j = Rj(xi − pj). (8)

We define the footprint of xi on bone j as the projection
of x′i,j on the ellipsoid surface (ellipsoidal normalization):

vi,j =
x′i,j

‖Sjx′i,j‖
=

Rj(xi − pj)

‖SjRj(xi − pj)‖
, (9)

and the displacement at vi,j w.r.t. xi can be defined as

di,j = x′i,j − vi,j (10)
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The footprint vi,j can be transformed onto the unit
sphere through the scaling matrix Sj :

ui,j = Sjvi,j =
SjRj(xi − pj)

‖SjRj(xi − pj)‖
(11)

If there exists a bijective mapping between the unit
sphere surface and the fitted object surface, which means
the displacement di,j is well defined on every point ui,j

on the unit sphere, then it can be expanded through the
spherical harmonics

di,j(ui,j) =
∞∑
l=0

l∑
m=−l

d̄lmYlm(ui,j) (12)

Note the displacement di,j is a 3 × 1 vector so we need
3 sets of spherical harmonic coefficients for the expansion:

d̄lm = (d̄lm,x, d̄lm,y, d̄lm,z)>. (13)

In a similar way, the normal on the object surface can
also be represented as a linear combination of the spherical
harmonics. Suppose the normal at point xi is ni and xi

is assigned to bone j. The normal ni will be transformed
into the local coordinate system of bone j through rotation
matrix Rj , then expanded with spherical harmonics:

ni,j(ui,j) = Rjni =
∞∑
l=0

l∑
m=−l

n̄lmYlm(ui,j), (14)

where the spherical harmonic coefficient n̄lm is also a
3× 1 vector:

n̄lm = (n̄lm,x, n̄lm,y, n̄lm,z)>. (15)

Fig. 2: Displacement at footprint vi,j on the ellipsoid cen-
tered at Oj . x′i,j is the local coordinate of data point xi, and
ui,j is the mapping of vi,j on the unit sphere.

To evaluate the displacement and normal functions, i.e.,
Eq. (12) and Eq. (14), the spherical harmonic coefficients d̄lm

and n̄lm need to be determined. With some sampling points
on the fitted object surface, d̄lm and n̄lm can be obtained by
minimizing the following energies for each bone j:

Ed,j(d̄lm) =

Nj∑
i=1

‖x′i,j − vi,j −
L∑

l=0

l∑
m=−l

d̄lmYlm(ui,j)‖2

(16)

En,j(n̄lm) =

Nj∑
i=1

‖Rjni −
L∑

l=0

l∑
m=−l

n̄lmYlm(ui,j)‖2, (17)

where Nj is the number of sampling points assigned to
bone j, and L is the maximum degree used for spherical
harmonics. The higher the degree of spherical harmonics
l used, the better the targeting function is approximated,

but the more computation time and storage are needed.
With experiments we find L = 6 is a good choice for
both fitting quality and computation resource. The geometry
fitting result of a 3D human model, which is sampled by
selecting its mesh vertices, is shown in Fig. 3.

(a) (b) (c)

Fig. 3: Use spherical harmonics encoded displacement func-
tion to fit the shape of a 3D human model. (a) 3D model.
(b) Sampling points and ellipsoidal skeleton. (c) Spherical
harmonics based displacement on the ellipsoidal surface of
each bone.

3.3 Point Cloud Segmentation
In the motion tracking problem the point cloud segmenta-
tion (or labeling) is a challenge problem. But if we have
already obtained a well aligned ellipsoidal skeleton along
with the spherical harmonics represented displacement and
normal functions, the segmentation can be easily achieved
through partitioning with nearest distance. Given a point
xi that needs to be labeled, the corresponding point on the
displaced surface of bone j can be found as:

x̂i,j = vi,j + di,j , (18)

where the footprint vi,j and displacement di,j are com-
puted through Eq. (9) and Eq. (12). Then the distance from
xi to bone j can be defined as the Euclidean distance
between xi and the transformed x̂i,j in the global coordinate
system:

dseg(xi, j) = ‖xi − (R>j x̂i,j + pj)‖, (19)

and xi will be assigned to the nearest bone measured by
dseg

label(xi) := arg min
j

dseg(xi, j). (20)

In the motion tracking process the skeleton is not guar-
anteed to be well aligned with the tracked object, so the
nearest bone of a point in the data set may not be always the
correct one. In this case we will use the normal information
to assist with the segmentation. Specifically, for each point
xi the normal at its corresponding point on the displaced
ellipsoidal bone surface can be computed through the spher-
ical harmonics represented normal function Eq. (14):

n̂i = R>j

L∑
l=0

l∑
m=−l

n̄lmYlm(ui,j). (21)

If the direction of n̂i differs too much with ni, which is
the normal at xi, then xi will not be assigned to bone j.
The difference can be easily measured with the dot product
between n̂i and ni.

Additionally, in the geometry fitting process described
in Sec. 3.2, the initial input point cloud also needs to be
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segmented. The spherical harmonics coefficients for the
displacement and normal functions are not available yet at
that time. In this case we just set the displacements to zero
vectors and do not use normal information for segmentation
assistance, which means only the distance from the point to
its footprint is used. To obtain a good segmentation we may
manually adjust the pose of skeleton to let it align with the
point cloud well in the initialization stage.

The point cloud segmentation procedure can be summa-
rized as the following parallel algorithm.

Algorithm 1 Point Cloud Segmentation

Require: The skeleton S = (B, C) is well aligned with point
cloud {(xi,ni)|∀i}.

Ensure: label(xi) is a proper labeling for each xi.
1: for each point xi parallelly do
2: d←∞;
3: label(xi)← null;
4: for each bone j do
5: nj ← n̂i as in Eq. (21);
6: dj ← dseg(xi, j) as in Eq. (19)
7: if ni · nj > certain threshold and dj < d then
8: d← dj ;
9: label(xi)← j;

10: end if
11: end for
12: end for

3.4 Pose Fitting

After segmenting the point cloud according to an initial
skeleton configuration with Algorithm 1, the next step is
to update the initial skeleton to let it fit with the pose
of the input data. The fitting error can be measured by
the summation of distances from the input points to their
corresponding points on the displaced ellipsoid surfaces.
Following our above notations the following energy term
is defined to measure the distance based fitting error:

Edist(pj ,Rj) =
w1

N

N∑
i=1

‖Sj(x
′
i,j−vi,j−

L∑
l=0

l∑
m=−l

d̄lmYlm)‖2,

(22)
where w1 is the weight for the distance energy term, N

is the number of points in input data, and j = label(xi) is
the assigned bone for point xi. This energy term is similar
to Eq. (16), but the difference is the optimizing variables
here are the bone centers pj and orientations Rj . Another
difference is the distance is scaled by Sj . The experiment
in Sec. 5.1 will show that by applying the scaling matrix Sj

on the energy term the small pose changing like twisting
along arms can be accurately captured. In our experiment
the distance is measured in meters, and we choose w1 = 10
so that the optimized energy is around 1.

The energy term above only considers the fitting error
of each bone individually. The bone centers and orienta-
tions should also fulfill the joint constraints in Eq. (4). As
discussed above, in our skeleton the joints are defined by
constraint vector pairs Eq. (5) and the joint constraint is not
strictly enforced, which allows the pose to be fitted more

accurately. The energy term for the joint constraint fitting
error is defined as follows:

Econs(pj ,Rj) =
w2

M ′

M ′∑
k=1

‖pk,l+R>k,lv̄k,l−pk,r−R>k,rv̄k,r‖2,

(23)
where w2 is the weight for constraint energy term and

M ′ is the number of joints. Other notations follow the
skeleton definition in Eq. (3) and Eq. (5). In the experiment
we set w2 = 1000 initially and increase it gradually to 5000
so that it is comparable to the first energy term and does not
constrain the bone movement too much, especially in the
first iteration.

In practice we find that the fitted skeleton pose falls
into local minimal in some cases where some bones col-
lide with each other. To deal with this problem we define
another energy term to avoid the bone collisions. Suppose
we want to avoid the collision between bones j and k.
Firstly the surface of ellipsoidal bone j is sampled into
a point set {yi | i = 1, ..., N ′j}. If there is a point yi

whose distance to pk is less than the radius of ellipsoid
k, it can be concluded that these two bones are collided.
To eliminate the anisotropy of the radius of an ellipsoid,
we can transform the ellipsoid into unit sphere with the
rotation and scaling matrices of the corresponding ellipsoid
for distance computing. Because {yi} is sampled in the local
coordinate system of bone j, we also need to transform
it into the global coordinate system before computing the
distance. So the energy term for avoiding collision can be
defined as:

Ecol(pj ,Rj) =
w3

N ′

∑
(j,k)

N ′j∑
i=1

es(r−‖SkRk(R
>
j S−1

j yi+pj−pk)‖2),

(24)
where w3 is the weight for this energy term and N ′ is
the number of all sampling points. The parameter s is the
attenuation coefficient of the exponentiation and r is the
threshold radius. If the scaled distance from yi to pk is
less than r, then the energy will become very large. In our
experiment we set w3 = 0.1 and s = 5, and r ranges from
0.5 to 1.5, depending on the bone pairs we are handling.

Suppose there are M bones in total. The optimal pose
{(pj ,Rj)|j = 1...M} with respect to a given segmented
point cloud can be solved by optimizing the combined
energy of all the three energy terms defined above:

Epose = Edist + Econs + Ecol. (25)

This is a non-linear optimization problem so we solve
it with the parallel L-BFGS-B algorithm [33], which is a
bounded non-linear optimization algorithm. Despite its fast
convergence, the primary reason we choose L-BFGS-B algo-
rithm is because with this bounded algorithm we can set
boundaries for the rotation angles (αj , βj , γj) of each bone
according to real human joint limit during optimization,
which increases the robustness of our method.

3.5 Motion Tracking
The point cloud segmentation and pose fitting procedures
are both relied on each other. So we use the Lloyd’s algo-
rithm to do this two procedures iteratively for the motion
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tracking purpose. Our algorithm starts with an initial skele-
ton pose configuration, according to which the input point
cloud is segmented. Then the pose of the skeleton is updated
with respect to the segmentation result, and the updated
skeleton will be used for next iteration. Since each step in
the iteration will not increase the energy, the convergence of
Lloyd’s process is guaranteed.

The optimized skeleton pose for the current frame of
data will be used as the initial configuration for the next
frame. To improve the robustness and accelerate the conver-
gence, we use a heuristic algorithm to adjust the position
of the initial skeleton before optimization. Suppose the cen-
troids of current and previous data frames are ct and ct−1,
then the initial skeleton will be translated by (ct − ct−1) so
it is closer to the current frame of point cloud data.

The motion tracking process with our ellipsoidal skele-
ton is described as the following Algorithm 2.

Algorithm 2 Motion Tracking

Require: The skeleton S = (B, C) is close to the initial frame
of data.

Ensure: The skeleton St captures the pose of each frame t.
1: t← 0;
2: S0 ← S ;
3: while data of frame t exists do
4: {(xi,ni)|i = 1...N} ← data of frame t;
5: ct ← centroid of frame t;
6: if t > 0 then
7: St ← St−1;
8: ct ← centroid of frame t;
9: translate St by (ct − ct−1);

10: end if
11: while not converged do
12: run Algorithm 1 with St and {(xi,ni)|i = 1...N};
13: {label(xi)|i = 1...N} ← segmentation result;
14: minimize energy Epose with L-BFGS-B;
15: {(pj ,Rj)|j = 1...M} ← optimized pose;
16: update St with {(pj ,Rj)|j = 1...M};
17: end while
18: t← t+ 1.
19: end while

4 EXPERIMENT

4.1 Algorithm Implementation
To reduce the running time our algorithms are all imple-
mented parallelly with Nvidia CUDA and running on GPU.
The point cloud segmentation algorithm (Algorithm 1) is
already a parallel algorithm, so in the implementation we
just assign one CUDA thread for each point xi to do
the computation. Both of the geometry fitting and pose
fitting procedures are energy optimization problems. As
mentioned before we use the L-BFGS-B algorithm to solve
the energy optimization problem. With an existing GPU
implementation of the L-BFGS-B algorithm [33], we only
need to compute the energy value and gradient of the
energy function and feed them to the L-BFGS-B algorithm
implementation.

The energy functions we are optimizing (Eqs. (16), (17),
(22), (23) and (24)) are all in the form of small energy

term summation. In the parallel implementation one CUDA
thread is used to compute the energy value or gradient for
one small energy term. To add all the energy value elements
a parallel reduction algorithm is used to utilize the parallel
computing resource. Adding the energy gradient elements
is a little complicated because only the gradient elements
of the same variable should be added, which leads to the
regional reduction problem: given {(xi, yi) | i = 1, ..., N, yi ≤
M,yi ∈ N,M ≤ N}, find {Sj | Sj =

∑
yi=j xi}. In this

problem each element xi (e.g., some value of a point) is
associated with the region yi (e.g., the label of a bone), and
all {xi} within the same region need to be summated. The
regional reduction problem can be efficiently solved with
the help of the parallel prefix sum algorithm [34] as follows:

Algorithm 3 Parallel Regional Reduction

Require: {(xi, yi) | i = 1, ..., N, yi ≤M,yi ∈ N,M ≤ N}.
Ensure: {Sj | Sj =

∑
yi=j xi}.

1: allocate array flags, indices of size M ×N ;
2: allocate array x′ of size N ;
3: for k ← 1, ...,M ×N parallelly do
4: i← k%N ;
5: flags[k]← 1 if yi = k/N , else 0;
6: end for
7: indices← parallel inclusive prefix sum of flags;
8: for i← 1, ..., N parallelly do
9: j ← indices[yi ×N + i];

10: x′[j]← xi;
11: end for
12: for j ← 1, ...,M parallelly do
13: a← 1 if j = 1, else indices[(j − 1)×N ] + 1;
14: b← indices[j ×N ];
15: if a ≤ b then
16: Sj ← parallel reduction of sub-array x′[a : b];
17: end if
18: end for

Algorithm 3 computes new positions of the input ele-
ments regarding to their regions with the prefix sum algo-
rithm first. Then the input elements are shuffled according
to the computed positions so that the elements from the
same region are continuous in the shuffled array. Finally
a parallel reduction is performed for each region of the
shuffled array. In Algorithm 3 the inclusive prefix sum
is used because the arrays begin from the index of 1. In
practice an array usually starts from the index of 0 so the
exclusive prefix sum is more convenient to use.

4.2 Input Data
The motion tracking framework we proposed works with
the point cloud data of human body, which is usually
captured through depth cameras like Microsoft Kinect [35].
To fully evaluate our method both the Kinect and Kinect v2
are used for data capturing in the experiments. The Berkeley
Multimodal Human Action Database (MHAD) [36] contains
not only the Kinect depth images but also motion tracking
marker positions so it can be used as ground truth to
evaluate our method. We also use the point cloud sampled
from 3D models to test our method against the interference
of synthesized scanning noise.
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Kinect Data. Microsoft Kinect can stream color and
depth images of the scene at about 30 FPS. Our method
only uses the depth image, which is equivalent to point
cloud data. To segment a person out from the background
of the scene we simply use the player index provided by
Kinect SDK. A single Kinect only gives partial sampling
points of a human body. To capture the complete body data
we use multiple Kinects simultaneously. But the problem
raised with multiple Kinects is that an extrinsic calibration is
needed to align the point cloud data from different Kinects.
We use the method described by Auvinet et al. [37] for the
extrinsic calibration of multiple Kinect cameras. Another
problem with Kinect captured data is that it does not include
the normal information. However, the normal at each point
can be simply computed as the cross product of vectors
from that point to its neighbors on the depth image. In
order to get smoothed normal across the surface, the depth
image will be smoothed before normal computation using
the bilateral filtering [38]. The advantage of bilateral filtering
is that its edge-preserving feature will keep the silhouette of
human body.

Berkeley MHAD. The Berkeley MHAD [36] provides
multi-modality data of basic human actions, including op-
tical marker based motion capture data, multi-view video
data, color and depth image data (from 2 Kinects), ac-
celerometer data as well as audio data. All the data provided
in this database are geometrically calibrated and temporally
synchronized, although the errors in calibration and syn-
chronization still exist due to the hardware limitation. We
use the depth image data from 2 Kinects as input of our
system and the motion capture data for evaluation of our
tracking result.

Synthesized Point Cloud from Animated 3D Models.
We use some existing methods to generate synthetic point
cloud data from animated 3D models. First we get a rigged
skeleton for an input human body model using the method
described by Baran and Popović [23]. Then we map the
rotations and translations in the skeleton animation files
found in CMU Motion Capture Database [39] to the rigged
skeleton. With the mapped motion sequence of skeleton the
3D model can be animated using the classic skinning ani-
mation method. Finally we sample the animated 3D models
into point coulds with artificial scanning noises described by
Berger et al. [40]. The advantage of this sampling method
is that it can simulate the scanning noises in a controlled
manner.

4.3 Skeleton Definition for Human Body

The ellipsoidal skeleton used for human motion tracking
consists of 17 bones (shown in Fig. 4a). As seen in the figure
initially the orientation of the local coordinate system of
each ellipsoidal bone is aligned with the global coordinate
system, which is the same as the Kinect camera coordinate
system (i.e. centered at the camera and having z+ direction
towards the shooting direction). Notice in Figure 4a the
skeleton is facing the camera.

The orientation of each bone in our ellipsoidal skeleton
is measured as the rotation of the bone from its initial pose,
which is illustrated in Figure 4a, to its current pose. In
our framework Tait-Bryan angles are adopted to represent

(a) (b)

Fig. 4: (a) Ellipsoidal skeleton used in our motion tracking
experiments. (b) Rotation hierarchy of human body skele-
ton.

the rotations in 3D space. Tait-Bryan angles are essentially
3 rotation angles with respect to the 3 axes in Cartesian
coordinate system. There are different rotation conventions
for Tait-Bryan angles due to the different orders of rotation
axes and the choices of either fixed or rotating coordinate
system (which is called extrinsic or intrinsic convention). In
this paper the Tait-Bryan angles of each bone about x, y,
and z axes are defined as α, β, and γ, and the extrinsic x-
y-z rotation convention is used. Notice the extrinsic x-y-z
convention is equivalent to the intrinsic z-y′-x′′ convention,
where y′ and x′′ represent the rotated axes. As discussed
earlier the rotations of bones in our ellipsoidal skeleton
are defined in a hierarchical structure, such that we can
set boundaries for the rotation angles according to real
human joint structures during the L-BFGS-B optimization.
The rotation hierarchy of human body skeleton used in our
experiment is rooted at abdomen and spread to limbs, as
illustrated in Figure 4b. With the initial skeleton pose and
coordinate system configuration shown in Figure 4a, the
boundaries of rotation angles for each bone used in our
experiment are listed in Table 1.

TABLE 1: Rotation angle boundaries of human body skele-
ton.

Bone(s) α β γ

Abdomen − − −
Chest [−π/2, π/4] [−π/8, π/8] [−π/8, π/8]
Hip [−π/4, π/2] [−π/8, π/8] [−π/8, π/8]
Neck [−π/8, π/8] [−π/4, π/4] 0

Head [−π/2, π/2] [−π/4, π/4] [−π/4, π/4]
Left Upper Arm [−π/2, π] [−π/2, 0] [−π, π/4]
Right Upper Arm [−π/2, π] [0, π/2] [−π/4, π]

Left Forearm [0, π] [−π, 0] 0

Right Forearm [0, π] [0, π] 0

Hands [−π/2, π/2] 0 [−π/4, π/4]]
Left Thigh [−π/4, π] [−π/4, π/4] [−π, π/4]
Right Thigh [−π/4, π] [−π/4, π/4] [−π/4, π]

Shanks [−π, 0] 0 0

Feet [−π/4, π/4] [−π/8, π/8] 0

4.4 Working Flow

The working flow of our motion tracking experiment con-
sists of two phases: geometry fitting and motion tracking, as
described in Sec. 3.2 and Sec. 3.5.

In the geometry fitting phase we capture a T-pose of
the subject, then manually adjust the size and orientation
of each bone in the skeleton according to the input data.
Finally we compute the spherical harmonic coefficients for
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the surface displacements and normals (if applicable) by op-
timizing the corresponding energies in Eq. (16) and Eq. (17).

In the motion tracking phase, we capture depth images
for different actions of the subject. The number of depth
cameras we used is 4 for Kinect, and 3 for Kinect v2. Then
the depth images are calibrated, synchronized, and merged
into point and normal data as described in Sec. 4.2. Finally
we run the motion tracking algorithm (Algorithm 2) with
the merged data and use the initial skeleton from previous
phase as input.

Fig. 5: Working flow of our proposed framework.

5 EVALUATION

5.1 Different Tracking Schemas

In the proposed pose tracking framework we introduced
several strategies to increase the accuracy and robustness
of the tracking process, including the spherical harmon-
ics encoded displacement function (Eq. (12)), the rotation
angle boundary (Table 1), the scaled distance energy term
(Eq. (22)), and the collision avoiding energy term (Eq. (24)).
In this section we will illustrate the effectiveness of these
strategies with experiment results on 3D model data and
Kinect data.

Spherical Harmonics Displacement (SHD). The spher-
ical harmonics encoded displacement functions on the el-
lipsoidal bones can capture the geometry of the tracked
object, thus can produce a more accurate tracking result.
Figs. 6b and 6c show the head part of the tracking results
on a 3D model (as in Fig. 6a) with and without SHD (which
means zero displacement thus tracking with ellipsoids) re-
spectively, while Figs. 6e and 6f show the ellipsoidal bones
as boxes for better visualization of the bone orientation. We
can see that with SHD the orientation of head is far more
accurate than the tracking schema without SHD.

Scaled Distance Energy and Rotation Angle Boundary.
While defining the energy term for distance based fitting
error (Eq. (22)), a scaling matrix Sj is multiplied to the
distance between the data point and its corresponding point
on the displaced ellipsoid surface. The scaling matrix Sj

is exactly the one in the definition of the ellipsoidal bone

(a) (b) (c)

(d) (e) (f)

Fig. 6: Tracking with/without spherical harmonic based dis-
placement (SHD): (a) 3D model; (d) initial pose; (b,e) result
without SHD; (c,f) result with SHD. In (e,f) the ellipsoidal
bones are shown as boxes for better visualization of their
orientation.

(Eq. (3)), so the distance error can be normalized based
on the size of each ellipsoidal bone. The normalization
makes the energy more sensitive to rotations so some small
pose-changing like arm-twisting can be captured in our
method, as shown in Fig. 7. Notice in Fig. 7 the bones
of our ellipsoidal skeleton are rendered as boxes which
are aligned with the axis directions of their corresponding
bones, such that the orientation of each bone can be seen
clearly. Figs. 7b and 7c show the difference of the tracking
result without and with applying the scaling matrix on a key
frame of the arm-twisting motion. It is obvious in Fig. 7c that
with the scaling matrix the rotations of hands are correctly
captured. Furthermore, we also propose to use the rotation
angle boundary to produce reasonable orientations of bones
according to real human body structure (Sec. 4.3). Fig. 7d
illustrates the effectiveness of this strategy. According to
human joint structure there is no relative twisting between
the forearm and hand, so we remove the DOF around y
axis of hand by setting the corresponding angle boundary
to [0, 0] (Table 1). Comparing with Fig. 7c (which does not
set the rotation angle boundary), the rotations of forearms
are also correctly captured, as shown in Figure 7d.

(a) (b)

(c) (d)

Fig. 7: Tracking results on arm-twisting with different
choices of distance error energy term and rotation angle
boundary. (a) The color image and input point cloud. Track-
ing result using the energy term (b) without scaling matrix
Sj ; (c) with scaling matrix Sj ; (d) with scaling matrix Sj

plus rotation angle boundary.
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Collision Avoidance Energy. We also proposed a colli-
sion avoidance energy term (Eq. (24)) to prevent the opti-
mization from falling into local minimum. In a successful
pose tracking result there should be no collisions between
bones. On the other hand, in our experiment we also find in
a failed tracking result there is usually a collision between
the bones. So we propose the collision avoidance energy
term to increase the robustness of our pose tracking method.
Fig. 8 shows the difference of tracking results without and
with the collision avoidance energy term on a frame of the
walking motion data captured by Kinect. We can see that
with collision avoidance the legs of the person in Fig. 8c
does not cross over as in the failure result (Fig. 8b).

(a) (b) (c)

Fig. 8: Tracking result (b) without, and (c) with collision
avoidance energy term on a frame of the walking motion
data captured by Kinect.

5.2 Different Initializations
Same as other energy optimization based methods our pose
tracking will fall into local minimum from a bad initial-
ization. So in the normal tracking process we assume the
initial pose of the skeleton does not differ too much with
the tracked object. Since our method adopts several strate-
gies to increase the accuracy and robustness, such as the
ellipsoidal bone displacement and collision avoiding energy
term, it is expected to produce a successful result from some
challenging initial configurations. Fig. 9 shows some tracing
results from two different initial poses: (1) the initial pose
with all rotation angles set to zero (Fig. 9a); and (2) a T-pose
initialization (Fig. 9e). The tracking results on a standing
pose with arms opened are all successful for both of the
initial poses (Fig. 9b and Fig. 9f), but the running time for
T-pose initialization is less since it is closer to the targeting
pose (as in Table 2). For the bended pose the first initial pose
takes a quite long time to converge, and the tracking result is
successful (Fig. 9c). But starting with the second T-pose our
method fails to converge to a correct result (Fig. 9g). Both
of the initial poses fail to converge to a successful result for
the sat down pose, as shown in Figs. 9d and 9h, since the
initial poses differ too much from the targeting shape. All
the running times of the tracking results in Fig. 9 are listed
in Table 2.

5.3 Tracking Accuracy
We use the Berkeley MHAD [36] to evaluate the accuracy
of our pose tracking method. For each experiment subject
(person) the MHAD has recorded the positions of 43 optical
markers, which are served as the ground truth for our

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9: Tracking with two different initial poses (a) and
(e): (b,c,d) are computed from initialization (a); (f,g,h) are
computed from initialization (e).

TABLE 2: Running-time for results in Fig. 9.

Initial
Pose

Input
Frame

Optimized Pose
Lloyd
Iter. #

L-BFGS-B
Iter. #

Time (ms)

Fig. 9a
#0 Fig. 9b 7 37 305
#50 Fig. 9c 9 208 1259
#100 Fig. 9d (Failed) 10 66 672

Fig. 9e
#0 Fig. 9f 2 18 121
#50 Fig. 9g (Failed) 6 141 805
#100 Fig. 9h (Failed) 6 68 590

tracking error measurement. The tracking error is computed
as the distance between the MHAD marker position and
the computed marker position from our tracked skeleton.
To extract the marker positions from the tracked skeleton,
we firstly assign the MHAD markers to their corresponding
bones in our human body ellipsoidal skeleton (Fig. 4a), as
shown in Table 3. Notice no marker is assigned to neck due
to the marker configuration in MHAD. Then we compute
the coordinates of the MHAD markers in the local coordi-
nate systems of their corresponding ellipsoidal bones with
the positions in a standard frame of data (usually the initial
frame). Finally the marker positions for our tracked skeleton
can be computed by transforming the local coordinates of
the markers into the global coordinate system for each frame
of data. The basic assumption for the marker position extrac-
tion is that each marker is relatively fixed on its assigned
bone, but in reality this is not true due to the deformable
nature of human body. So the measured error in this way is
not absolutely precise.

TABLE 3: Correspondence between MHAD markers and the
bones of our ellipsoidal skeleton for human body.

Bone MHAD Marker IDs Bone MHAD Marker IDs
Abdomen 4, 7, 8, 11 Left Hand 17, 18, 19
Chest 5, 6, 9, 10, 12, 20 Right Hand 25, 26, 27
Hip 28, 29, 36, 37 Left Thigh 30, 31
Head 1, 2, 3 Right Thigh 38, 39
Left Upper Arm 13, 14 Left Shank 32, 33
Right Upper Arm 21, 22 Right Shank 40, 41
Left Forearm 15, 16 Left Foot 34, 35
Right Forearm 23, 24 Right Foot 42, 43

In order to investigate the influence of some external
factors on the tracking accuracy, including the calibration
error between multiple depth cameras and the quality of
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the input data, we also use some synthetic data from 3D
models for the tracking accuracy measuring experiment
before using the data from MHAD. The synthetic data is
obtained by sampling an animated sequence of a 3D model
into point cloud data. One problem is that there is no marker
information on 3D model data, but we can produce some
virtual markers by manually selecting some vertices from
the model. In the experiment we pick 43 markers with the
same positioning configuration as in the MHAD.

5.3.1 Result on Synthesized Point Cloud from 3D Models
In the synthetic data testing we use the point cloud data
sampled from an animated dancing model with a sequence
of 200 frames. The model size is normalized according to the
height of the model, so the measured distance error is also
normalized. Fig. 10a shows that over 80% of the tracking
errors are below 0.02 for the prefect dancing model data.

(a) Perfect dancing model data.

(b) Noisy dancing model data.

(c) Noisy and incomplete dancing model data.

Fig. 10: Normalized fitting errors on dancing model data.

From the error color map in Fig. 10a we notice that
larger errors occur around frame 143 at markers on head,
right arm, and right hand. By visualizing the input model
of frame 143 in Fig. 11a, we can see the head is strongly
deformed and the right hand goes inside the body. So
the tracking errors at these parts are mainly caused by
the geometry changing of the input data. Even though the
tracking result in Fig. 11b still looks fine.

(a) (b) (c) (d)

Fig. 11: Input and tracking results on frame 143 of dancing
model data. (a) Input model. The tracked pose, manually-
selected markers (blue) and our tracked markers (red) for:
(b) perfect, (c) noisy, and (d) noisy and incomplete dancing
model data.

We also synthesize some scanned data of the same model
sequence using the method described by Berger et al. [40]
to investigate the influence of noise and incompleteness of
input data on our method. We first add noise into the testing
data, and the tracking error in Fig. 10b indicates that the
tracking result does not change too much comparing with
the prefect data, although the percentage of errors below
0.01 decreases a little. We further add incompleteness into
the noisy data, and there is also no significant downgrade
of the tracking result, as shown in Fig. 10c. Figs. 11c and 11d
show the tracked pose and marker positions at the frame 143
of the two data sets, and the results are still good. The full
tracking result on all the frames of dancing model data is
shown in our supplementary video.

5.3.2 Result on Berkeley MHAD
The Berkeley MHAD [36] contains 12 subjects (persons) and
each subject performs the same 12 actions, which are: 1)
jumping in place, 2) jumping jacks, 3) bending, 4) punching,
5) waving two hands, 6) waving one hand, 7) clapping hands,
8) throwing a ball, 9) sit down then stand up, 10) sit down,
11) stand up, and 12) T-pose. Since actions 10 and 11 are
decompositions of action 9, we exclude them from our pose
tracking experiment. The T-pose action (action 12) is used as
the input of our geometry fitting process, which computes
the spherical harmonic coefficients for displacements and
normals, thus is not used in the pose tracking process either.
Due to the page limit we only choose subject 2 as a delegate
in this paper.

The color map in Fig. 12 shows the average tracking
errors on Berkeley MHAD for each of the 9 actions and 43
markers. The statistic shows that over 80% average tracking
errors are below 6 cm. The tracking results on all the actions
in MHAD can be checked in our supplementary video for a
more intuitive evaluation.

From Fig. 12 we can see the average tracking error on
action 4 (punching) is bigger comparing with other actions.
So we visualize the tracking errors of all the frames in action
4 for further analysis, as shown in Fig. 13.

In Fig. 13 we notice that the tracking errors on arms
and hands (markers 14 to 19, and 22 to 27) are relatively
larger, which is reasonable because in the punching action
the major movement comes from arms and hands. The color
map in Fig. 13 indicates particular frames where the tracking
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Fig. 12: Average tracking errors on Berkeley MHAD.

Fig. 13: Tracking errors on action 4 (punching) in MHAD.

errors on arms and hands are relatively larger. We pick
frames 23 and 92 among them and visualize the tracked
pose, markers, along with the color image in Fig. 14. From
Fig. 14 we can see the tracked poses are still acceptable in
these worse cases.

(a) (b)

Fig. 14: Tracking results on data frames (a) 23 and (b) 92 in
action 4 (punching) where the tracking errors are large. In
each frame the color image is on the top-left, the MHAD
markers (blue) and our computed markers (red) are on the
bottom-left, and our tracked pose is on the right.

The largest tracking error in Fig. 13 comes from marker
10, but the error is not faithful because the optical marker
positions provided in MHAD is inaccurate in this case.
Marker 10 is attached on the chest of the person, and its posi-
tions are not recorded correctly for some frames in MHAD,
probably due to occlusion. Fig. 15 shows the positions of
marker 10 of data frames 25 and 30. In Fig. 15a the reported
position of marker 10 in HMAD (blue) is far away from the
chest, and in Fig. 15b the position of MHAD marker 10 is
at the origin (in which case we count the tracking error as

0). Fig. 15 also shows the computed marker positions (red)
from our pose tracking result, which are all on the chest of
the person.

(a) (b)

Fig. 15: MHAD marker positions (blue) and our computed
marker positions (red) for marker 10 on data frames (a) 25
and (b) 30.

5.4 Comparison
We compare the average joint position error of our method
with 2 state-of-art depth camera based marker-less motion
tracking methods, Wei et al. [7] and Zhang et al. [17] (we use
their results without pressure data for a fair comparison),
as well as traditional ICP and Kinect SDK [13], as shown
in Fig. 16. The input data and tracking results of other
methods are all from [17]. From Fig. 16 we can see our
method performs a little better than Wei et al. [7], and much
better than ICP and Kinect SDK [13]. Although our method
performs a little worse than Zhang et al.’s [17] on the actions
presented in their paper, we see a failure case with their
method on which our method performs well. Fig. 17 shows
2 consecutive frames in a jumping action and the tracking
results of our method and Zhang et al.’s [17]. The missing
data in the first frame causes the failure of their method
on right arm, while our method still works fine. Notice
the input data we obtained from the authors of [17] does
not include normal data so our method runs without the
help of normal information for segmentation. In addition,
the input data is not well calibrated, which also reduces the
tracking quality of our method since the geometry of poorly
calibrated data is not accurate. So it is reasonable that our
method performs a little worse than Zhang et al.’s [17].

Fig. 16: Average tracking error comparison.

5.5 Variety of Motions
To further test the performance of our pose tracking method
we capture various motions with both Microsoft Kinects
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Fig. 17: Point cloud (left) and tracking results of our method
(middle) and Zhang et al.’s [17] method (right) for 2 consec-
utive frames.

and Kinect v2s in the experiment. To alleviate the occlusion
problem in data capturing we use multiple depth cameras,
specifically 4 Kinects or 3 Kinect v2s, which have shooting
directions forming 90 or 120 degree angles with each other.
The multiple cameras are calibrated with the method de-
scribed by Auvinet et al. [37]. There is no optical marker
tracking system available in our experiment so the tracking
result can not be compared with any ground truth, and
we can only visually check the tracking performance along
with the depth and color images. However, comparing with
the skeletons reported by Kinect SDK, our tracking method
shows a higher success rate in the experiment. Fig. 18 shows
the tracking results on some motions captured by Kinects or
Kinect v2s, along with the color/depth images and Kinect
SDK reported skeletons. One major problem with Kinect
SDK skeleton is that it performs bad if there is an occlusion.
Our method uses the fused data from multiple cameras so
does not suffer from this issue. Another problem with the
skeleton from Kinect SDK is that the bones are determined
by the joint positions, which are not always accurate, so the
lengths of bones change from one frame to another, and
sometimes become inaccurate. In our framework we use
the predefined skeleton model so it can avoid this problem.
For the comprehensive pose tracking results on Kinect and
Kinect v2 data the readers can check our supplementary
video.

5.6 Failure Cases
From the observation of our detailed experiments we sum-
marize two major reasons which cause the failure of our
motion tracking method. One reason is the bad initialization
of the skeleton, as described in Sec. 5.2. This is a common
problem for the energy optimization based motion tracking
methods. Although we have several mechanisms to reduce
the chance of falling into local minimum, our method still
fails for some bad initialization. The other reason is the qual-
ity of the input data. Moderate noise and incompleteness of
the input data can reduce the performance of our method,
as shown in Sec. 5.3. Even worse data quality may cause the
failure of our pose tracking method, as shown in Fig. 19. In
this figure the captured data frames from different Kinects
at the same time are not well synchronized when a fast
punching is performed, and our tracked poses of the right
arm and hand are incorrect due to the bad data quality.

5.7 Performance
The hardware platform for running all our motion tracking
experiments consists of Intel Xeon E5620 2.4GHz CPU,
Nvidia GeForce GTX 780 Ti graphics card, 20GB DDR3

RAM and 64-bit Microsoft Windows 7 Enterprise operating
system. The typical running time along with the data size
and optimization iteration number for different data types
in our experiment are reported in Table 4. We can see the
running time is affected by the data size and optimization
iteration number. The average running time ranges from 200
ms to 400 ms, while the maximum time can exceed 1 second.

TABLE 4: Running-time of different types of data.

Data Set
(# of Frames)

Point #
Lloyd
Iter. #

L-BFGS-B
Iter. #

Time (ms)

Kinect 2: Sitting Down (Fig. 18f)
(226)

avg. 25620 5 25 193
max. 36620 9 83 501

Kinect: Bending (Fig. 18a)
(175)

avg. 82184 7 35 429
max. 94573 29 121 1190

MHAD: Action 1 (Fig. 12)
(135)

avg. 47912 6 46 389
max. 54460 24 125 926

Perfect Dancing Model (Fig. 10a)
(200)

avg. 7061 9 71 396
max. 7061 29 186 892

6 LIMITATION AND FUTURE WORK

One major limitation of our proposed motion tracking
framework is that it requires a manual alignment and
adjustment for the skeleton initialization in the geometry
fitting process (Sec. 3.2). In the future we would like to
explore an automatic method for the geometry fitting, by
following the ideas from skeleton extraction and rigging
works [23], [26].

Another major limitation of this work is our motion
tracking system is not exactly running in real-time. Possible
approaches to reduce the running time include reducing the
size of input points by down-sampling the depth image,
adopting a different optimization framework which con-
verges faster, and optimizing the GPU implementation of
our algorithm.

Currently only the depth images are used for our
method. In the future it is possible to integrate this method
with other modalities of data, such as color images and/or
motion sensors, to further improve the tracking accuracy.
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