APPENDIX A

Deformation and Force Simulation
The Euler-Lagrange equation of a 3D deformable
body discretized using the FEM is:

Mii + Cia + Ku = f, (A1)
where u is the displacement vector; M, C and K are
the mass, damping and stiffness matrices and f is the
external force. Under the linear elasticity assump-
tion, there matrices are all constant (independent
w.r.t. the displacement). Based on Equation (A.1) a
generalized eigen problem is defined as:

K® = M®A, (A.2)

where A is a diagonal matrix and its diagonal ele-
ments are the corresponding eigenvalues. Solving
the above equation gives us the modal displacement
matrix, ®, with the size 3n x m where m is the
number of modes which normally is a much small-
er number than n. With ®, the spatial displacement
u can be expressed with a set of reduced coordi-
nates as:

u=dq, (A.3)
where q is called the spectral displacement. If we
substitute Equation (A.3) into Equation (A.1) and
pre-multiply ®T at both sides of the equation, we
will have a reduced or spectral version of Euler-
Lagrange equation with size m:

M,{ + C,q + Ky q = @7f, (A4)
where My = ®"™M®, C; = ®TCP and K, = P"K®
all become diagonal matrices. However, Equation
(A.4) is only able to handle small deformation be-
cause the linear strain tensor is used, otherwise the
stiffness matrix will not be constant. In order to
incorporate large rotational deformation, the Mod-
al Warping technique [13] is used such that the
rotation at each node is estimated and tracked by a
3n x 1 rotation vector w which is computed as the
curl of the displacement field:

W=-Vxu=2Vxdq="¥q, (A5)
where W is a pre-computed modal rotation matrix.
Each 3 X 1 component in w represents the axis-
angle-form of rotation at a node on the finite ele-
ment mesh. Based on it, we can get the rotation
matrix R. The readers can refer to [13] for the de-
tailed derivation. The idea behind Modal Warping
is embedding a local coordinate frame at each fi-
nite element node. The deformation at the node is
computed with the estimated rotation removed.
Thus, Modal Warping can be considered as a co-
rotational form of linear modal analysis. Based on
matrix R, Equation (A.3) is then modified as
u = R®q, and Equation (A.4) is changed to:

Myd + Cqq + Kqq = @T(RTS). (A.6)

Equation (A.6) contains a set of decoupled ordi-

nary differential equations (ODEs). In order to
solve it, we use average acceleration method to linear-
ize the ODE [44], which yields a linear system to be
solved at each time-step:

Ag =b, (A7)
where A =M, +yhCy + ph?’K, and b=f"—
Caq™' — K ™. "' and q"*! are displacement
and velocity predictors defined as:

~ .t h? ..

"t =q" +hq" + (1 - 24", (A.8)
"t =q"+ (1 - y)hit (A9)
Scalar h represents the size of the time-step, while
scalars B and y are two constants where 8 = 1/4
and y = 1/2. Note the superscripts t and t + 1 in-
dicate the current and the next time-step. Then the
unknown displacements and velocities can be ex-
pressed as:

qt+1 — gt+1 + thqt+1 (AlO)
qt+1 = '('it+1 + tht+1' (All)
Substituting Equations (A.8) and (A.9) into Equa-
tions (A.10) and (A.11) yields:
@ =g +hat+ S (2@ ) (a1
4™t = @° + G @@+ §Y), (A13)
which are Equations (6) and (7) in Section 5.3.

The users’” manipulation and interaction is real-
ized with Lagrange Multiplier Method. When posi-
tion constraints are applied, an elementary matrix
E is used to pick out the constraint nodes and the
linear position constraint can be formulated as
Jq = ¢, where ] = ER® is the constraint matrix. c is
a vector representing the desired displacements of

constrained nodes. The constrained version of the
time-integration equation is written as :

(,3:2] (ﬁh(j])T) (g) - (C _b]'q)/ (A.14)

where A is the vector of the unknown Lagrange
Multipliers. Let J = Bh?J and € = ¢ — J§, Equation
(A.14) can then be expressed as:

A JT\ (i) _ (b
(3 5)®-0 (A15)
Solving Equation (A.15) gives us the solution of q,

the spectral acceleration. The constraint spectral
force can be computed as:

f,=J"A (A.16)
The corresponding force in spatial domain is:
f = Bh*ETA. (A17)

The corresponding constraint forces in spectral and
spatial domains are related by: f, = ®"R'f.



APPENDIX B

Proof of Lemma and Theorem

Proof of Lemma

By Equation (A.13), the changes of velocity at time-
stepst,t+ 1, and t + k, for k = 2 can be obtained
as follows:

-4 =hG@E T +EY),  (A18)
g - q = G @+ ), (A19)
qt+k _ qt+k—1 — h(% (qt+k—1 + qt+k)). (AZO)

It follows from Equations (A.18) and (A.19) that the
acceleration at time-step t, i.e., 4, contributes to
the change of velocity from ¢t — 1 to t and from t to
t +1. Further, Equation (A.20) shows that the
change of velocity fromt+k—1tot+k, fork >
2, is determined by only the accelerations of its
current and previous time-step, i.e., "% and §t+<*

for k = 2, and hence is independent of §".
This completes the proof of Lemma.m
Proof of Theorem

Suppose the acceleration at any time-step ¢, §', is
lost, and we directly set it as zero without any pre-
diction, ie., ' = 0. Using Equations (A.13) and
(A19), we can derive the velocity distortion at
time-step ¢, Aq", as:

A" = SR, (A.21)

and the velocity distortion at any subsequent time-
step as:

AGT* = hil, (A22)
for k > 1. These are the conclusions from Lemma.
By Equation (A.12), theh displacement at time-step ¢
is q°=q" +Aq + (S (§ + qt)j. So if the
acceleration {* is lost, we can then' define dis-
placement distortion at time-step t, Aq", as:

Aqt = - R2§". (A.23)
Similarly, go Equation, (A.12) we have q**' =
q'+ hqt+ ~ Gﬂ(qt + @**1) |, and when the accelera-
tion ' is lost and by Equation (A.21), the dis-
placement distortion at time-step #+1 is:

AQ™! = Aq® + hAQE + h2§t = h2g". (A.24)
Similarly, using Equation (A.22), the displacement
distortion at time-step t+2 is Aq™? = Aq"*! +
hAqt+1 — tht + tht — thqt.

By induction, the displacement distortion at any
time-step t + k, for k = 2, can be computed as:

Aqt+k — Aqt+k—1 + hAqt+k—1 — khzqt (A25)
The second equality comes from both the induction
hypothesis Aq*%~* = (k — 1)h%§' and Equation
(A.22): AG™RT = hgt.

Therefore, it follows that when the acceleration at
time-step ¢ is lost, the displacement distortion from
time-step t + 2 is linear with respect to the change
of time (k). m



