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Here we elaborate more details of the network architec-
ture and training details in Section 1, the dataset collection
and preprocessing in Section 2, limitations and social im-
pact in Section 3.

1. Audio2gestures Network Details
1.1. Network Architecture

For the audio2gestures module, we employ two encoder
sub-networks (i.e., audio and pose) and three decoder sub-
networks (i.e., face, body, and hand).

Audio Encoder: The audio encoder network is used to ex-
tract the audio features, combined with the information of
the first frame to generate the feature vectors for 128 frames.
Tab. | shows our encoder network structure. We employ
the standard 4-layer U-Net structure [7] as the backbone for
audio feature extraction. Each convolution layer in our en-
coder network is followed by a LeakyReLU activation and
batch normalization [4].

Pose Encoder: The purpose of using a pose encoder is to
extract the feature of the initial pose and alleviate overfit-
ting to the single initial pose condition. After being ex-
tracted by the pose encoder, the pose feature is used to guide
the network generation for the start pose and the general
appearance of the next sequence. The input of the pose
encoder is PS; or PS; € R%. It is mapped to a 32-
dimensional feature space through a multilayer perceptron
(MLP) shown in Tab. 2, where each linear layer is followed
by a LeakyReLU activation.

Face, Body, and Hand Decoders: In our decoder, we
use three MLP modules to generate the corresponding face,
body, and hands parameters, respectively. The structure of
decoders is shown in Tab. 3, whose inputs are the feature
vectors extracted from the encoder network, and the output
is face, body, or hands parameters in 128 frames. Our body
and hand decoders share a similar structure, with the only

Table 1. Detailed network architecture of audio encoder.

Type Kernel  Stride Output
DeepSpeech - - 1 x128 x 29
Conv 2D 4 x4 2x2 32x64x13
Conv 2D 4 x4 2x2 128x32x5
Conv 2D 4x4 1x1 256x32x2
Conv 2D 3x1 1x1 256 x32x2
Reshape - - 256 x 64
Interpolation  Bilinear - 256 x 128
U-Net - - 256 x 128
Concat p - - 288 x 128

Table 2. Detailed network architecture of pose encoder.

Type Operation Output
Initial pose B x 59
Linear FC (59, 128) B x 128
LeakyReLU 0.2) B x 128
Linear FC (128,128) B x 128
LeakyReLU 0.2) B x 128
Linear FC (128,32) B x 32

difference in the output sizes. Each convolution layer in our
decoder network is followed by a LeakyReL U activation.

1.2. Training Details

Human Body Translation: If the training subject is in
sitting gestures, we only generate face, body, and hands
parameters during training, as mentioned in the main
manuscript. For standing gestures, additional translation



Table 3. Detailed network architecture for decoders.

Face Decoder:

Type Kernel Stride  Output
Concat s - - 288 x 128
Conv 1D 3 1 256 x 128
Conv 1D 3 1 256 x 128
Conv 1D 3 1 10 x 128
Body Decoder:

Type Kernel Stride  Output
Concat s - - 288 x 128
Conv 1D 3 1 256 x 128
Conv 1D 3 1 256 x 128
Conv 1D 3 1 35 x 128
Hand Decoder:

Type Kernel Stride  Output
Concat s - - 288 x 128
Conv 1D 3 1 256 x 128
Conv 1D 3 1 256 x 128
Conv 1D 3 1 24 x 128

parameters are required for our body pose decoder, so our
network will generate three translation values to represent
the position of the current gesture. To ensure the continu-
ity of our recurrent generation, we also add this translation
information to the initial pose state.

Noise Addition: In order to enhance the gestures guided
by the initial state to be more general, we introduce random
Gaussian noise to the initial state for loose constraints. To
generate a smooth sequence without any sudden change, we
need to add noise to the ground truth pose sequences at the
same time. Therefore, we use a sequence-level noise ad-
dition method to ensure that 1) the start pose in the pose
sequence is the same as the initial pose; and 2) the whole
pose sequence is highly consistent and reasonable.

For frame ¢ in video V,, we use ]?‘,T,t € R and lam S
R to represent the predicted facial expressions and pose
gestures respectively. Random noise & ~ N(0,0) € R
is applied to both Pf and PS to enhance the diversity of
generated sequences. During training, we add noise £ to the
target sequence (e. g.Pf) in a smooth manner:

PS¢, « P&, + max(0,1—t/m) x €, (1)

where the modification range m is set to 10 empirically.
This method is also applied to unpaired sequences Pf.

Inference Smooth: In the inference phase, since we have
a recurrent scheme, the start pose 15:,3’1 of the current se-
quence f’m will be very close to the end pose f)a:—l,end of
the previous sequence P,_,. However, there is no guar-
antee that the two adjacent poses are precisely the same.
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Figure 1.
parameters. Random noise is adopted for enlarging the training
space of the initial pose, while larger noise values would reduce
the continuity between sequences.

Visualization of different random noise hyper-

Therefore, we apply smooth optimization as follows:

f’l.,t — f’m + max(0,1 —t/k) x e. )

where € = f’w_Lend — f’gC,l and the smooth range k is set
to 10 emprically.
Random noise study: Due to our extremely short training
data, using the initial pose as a gesture template is prone
to overfitting. Thus we use random noises £ ~ N(0, o)
to enlarge the training space of the initial pose in Fig. 1,
which further enhances the diversity of our generated re-
sults. However, it will affect the continuity between se-
quences. Considering the trade-off between diversity and
continuity, we empirically set the range of o € [0.1,0.3].

2. Dataset
2.1. Data Preprocessing

Audio preprocessing. To convert audio signal into audio
features as the network input, we use the off-the-shelf fea-
ture extractor DeepSpeech to extract the corresponding au-
dio features. We re-sample the output audio features with
linear interpolation to ensure a sampling rate of 30 FPS,
corresponding to the frame rate of our videos.

3D human model. For each frame in the video, we fit
a human model by the algorithm SMPLify-X [6]. How-
ever, SMPLify-X is an image-based optimization method,
leading to unnatural movements for our video fitting pro-
cedure. Therefore, for human model fitting in the speech
video scenario, we make the following modifications: (1)
fix the body shape and global orientation for stabilization;
(2) add an inter-frame motion loss to regularize the move-
ment between two adjacent frames in a proper range; (3)
apply the previous frame fitting result as the initial state for
the current frame fitting to reduce fitting ambiguity.

2.2. 3D Human Model Fitting Details

As mentioned in the main manuscript, we use SMPL-
X model [3, 5, 6] to represent the speech state of each per-
son. Our 3D human model-fitting method is the modified
SMPLIify-X algorithm [6]. Since our task is human model



Figure 2. Illustration of the test videos in our experiments. Here we exhibit a representative video frame for each speaker, where sequences
A, B, and C are videos collected online, and sequences D and E are our self-captured videos, both containing rich gestures such as sitting
and standing. Below each person are trace maps of the human model that are tracked from different keyframes, which indicate the motion

range of each person and their common gestures.

fitting in the speech video scenario, we make the following
modifications: (1) fix the body shape and global orienta-
tion for stabilization; (2) add an inter-frame motion loss to
regularize the movement between two adjacent frames in a
proper range; (3) apply the previous frame fitting result as
the initial state for the current frame fitting to reduce possi-
ble ambiguities.

* We first fit the initial frame following the SMPLify-X
algorithm [6]. Then the body shape and global orienta-
tion are fixed during the fitting of other frames. Specif-
ically, we set the initial values of these parameters and
cut off the gradient during the optimization process.

¢ The movements of human bodies and hands in our
video are continuous. However, the OpenPose [1] re-
sults are usually inaccurate or invalid. And the original
SMPLIify-X algorithm will produce severe jitter, which
is not in line with real body movements. Therefore, in
addition to the original fitting loss LsmpLity-x, We pro-
pose to introduce body pose motion loss Lyoqy, hand
pose motion losses Lpang and Lyangr to regularize the
movements between two adjacent frames in a proper
range. The motion loss function Lg; is defined as:

Lric = LsmpLify-x + WLvody + WLhandi + @ Lhandr,
Lhody = |16 b]3,
Ehandl = ||hl - ill“%a

AChandr = ||hr - ﬁr”%’
(3)

where b, h;, and h, indicate the parameters of body
pose, left-hand pose, and right-hand pose in the cur-
rent frame, respectively. 13, le, and BT indicate the pa-
rameters of body pose, left-hand pose, and right-hand
pose in the previous frame, respectively. w is set to 1e2
empirically.

e SMPLify-X algorithm is adopted to fit the 3D human
model from 2D key points. However, this fitting pro-
cess is an ill-posed problem because the same 2D key
points may correspond to different 3D gestures. There-
fore, we can adapt the parameter values of the previ-
ous frame, which not only enhances the smoothness
between video frames but also provides prior knowl-
edge when fitting the current frame. At the beginning
of fitting each frame (except the first frame), we use
the parameter values of the previous frame as the ini-
tial value of the current fitting. In this way, not only is
the fitting time shortened but the fitting errors can also
be reduced.

Experimental results show that our fitting method out-
performs the SMPLify-X algorithm. For example, when the
detection result of OpenPose is invalid (e.g., Fig. 3 (a)), our
method can also generate reasonable fitting results (Fig. 3
(c)) based on the information constraints from the previous
frame.

2.3. Dataset Subjects

For dataset construction, we collect videos from 5 sub-
jects, spanning over various gestures, including sitting,



a) Open pose result b) SMPLIfy-X result‘ B c¢) Ours

Figure 3. Comparison of fitting results between SMPLify-X and
our method. While SMPLify-X occasionally fails when encoun-
tering fast motion, our proposed modifications can still achieve
stable results.

Jb) Motion blur

a) Leg sliding issue

Figure 4. Failure cases with leg sliding issue and motion blur. (a)
When the individual remains stationary, subtle translations are ob-
served in the foot and leg regions. (b) Motion-induced blurriness
is evident in the moving hand.

standing, and moving. Here we visualize representative
cases used in our experimental comparisons (shown in Fig.
2). Below each person, we also exhibit the randomly sam-
pled motion traces of the corresponding person, from which
we can see the motion range of each person and their com-
mon gestures.

3. Limitation and Social Impact
3.1. Limitations

Leg sliding issue. Directly constraining the SMPLX pa-
rameters has led to the problem of leg sliding in Fig. 4(a).
Such constraints fail to ensure a robust connection between
the legs and the ground, resulting in observable leg trans-
lational movements. A potential remedy is to enhance our
model by incorporating constraints based on foot keypoints.
Nonetheless, given our scant training dataset, this adapta-
tion is notably challenging.

Motion-induced blur. As depicted in Fig. 4(b), specific re-
gions (highlighted in red) demonstrate pronounced motion
blur, even when the rest of the body exhibits minimal move-
ment and maintains clarity. This blurring can be attributed
to two primary reasons: a) the paucity of our training data,
and b) the inherent limitations of the vid2vid [2] rendering
technique in managing localized blurring. A prospective so-

lution could involve embedding a deblur module during the
rendering phase, utilizing poses to pinpoint and mitigate re-
gions prone to motion blur.

3.2. Social Impact

Our method could generate realistic videos with diverse
gestures. This work can positively inspire future computer
vision and deep learning research in many application ar-
eas, including virtual human creation, cross-modal anima-
tion, and co-speech gesture generation. However, we should
also consider the misuse of this work since the source code
will be publicly available. Therefore, we require all videos
generated using our method can only be used for academic
research and be marked as generated. The proper use of this
technology will foster positive social development. In addi-
tion, we hope that the videos generated by our method can
serve as training data to help improve the development of
full-body fake video detection.
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