Fast Hierarchical Test Path Construction
for DFT-Free Controller-Datapath Circuits

Abstract

Yiorgos Makris, Jamison Collins, Alex Orailoglu
CSE Department — UC San Diego
{makris, jdcollin, alex}@cs.ucsd.edu

exhaustive controller

FSM

We discuss a hierarchical test generation method for
DFT-free controller-datapath pairs. A transparency-
based scheme is devised for the datapath, wherein locally
generated vectors are translated into global design test.
The controller is examined through influence tables, used
to generate valid control state sequences for testing each
module through hierarchical test paths. Fault coverage
levels and vector counts thus attained match closely those
of traditional test generation methodologies, while
sharply reducing the corresponding computational cost.

1. Introduction

Hierarchical test methodologies [8-10] have been
gaining popularity due to their ability to manage the
complexity of large designs in a divide-&-conquer
fashion, as shown in Figure (1). Yet several challenges
need to be addressed in order for such methodologies to
attain efficiency and effectiveness.

Despite the ability to generate efficient local test for
each module, the success of hierarchical test generation
depends on the efficacy of the test translation process.
Vector-by-vector test translation is complete but faces a
complexity barrier. Bulk test translation using
transparency behavior [1, 3, 7] is fast, albeit at the cost of
sacrificing part of the translation capabilities of the
design, as shown in Figure (2)(a). A wide yet compact
transparency definition and a concise yet fast test
translation method are therefore required.

In controller-datapath pairs, such as in Figure (2)(b),
the impact of the controller on the datapath needs to be
taken into account during test translation. Controllers,
however, do not exhibit transparency, endangering
the applicability of hierarchical test. In addition,

Therefore, the controller-datapath interface is traditionally
enhanced through DFT hardware [5] or controller
redesign [3]. However, the cost of extra area and possible
critical timing path complications incurred require that a
comprehensive, yet non-exhaustive analysis of the
controller-datapath interaction be performed, before
resorting to expensive DFT.

To address these challenges this paper presents a
hierarchical test generation solution for controller-
datapath pairs that does not presume DFT at the interface.
In section 2, we demonstrate the challenges associated
with this task on an example circuit. In section 3, we
present a transparency-based hierarchical test generation
approach, using the transparency channel definition
introduced in [7]. In section 4, we introduce the concept
of influence tables, a mechanism for exploring the impact
of each controller state on the datapath. In section 5,
influence tables are combined in order to derive
appropriate control state sequences for testing each
module. In section 6, the identified control state
sequences are used as constraints that speed up
hierarchical test path identification, by pruning the search
space. Experimental results in support of the proposed
combined controller-datapath scheme are provided in
section 7.

2. Motivation

Hierarchical test generation requires that local test be
translated to global design test. Test translation on a
controller-datapath circuit, however, poses a number of
challenges to be addressed. The difficulty of the problem
is motivated in this section, based on the MUL example
circuit shown in Figure (3), an 8-bit binary shift-&-add
sign-magnitude multiplier described in [6].
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Figure (3): Example circuit

2.1 Datapath challenges

Translating the local test in a vector-by-vector manner
faces a large search space, making exhaustive search
impossible. In the example circuit, reasoning among
shifting, adding and clearing is required for testing the
ADDER. Automating this process is complicated, and
feedback loops, such as the one between the ADDER and
the ACCUMULATOR shift-register, will only increase
complexity. The reconvergent paths from the QO signal of
the MULTIPLIER through the AND ARRAY, the
ADDER and the ACCUMULATOR and through the
SIGN, the MUX, the A[7] and the ACCUMULATOR,
will also result in excessive backtracking. Furthermore,
word-level reasoning is insufficient to handle signals that
split, such as the output M of the MULTIPLICAND.

Value-based, vector-by-vector test translation defeats
the purpose of the hierarchical approach. The benefits of
hierarchical test generation arise when test translation is
performed through reachability paths. Such paths are
constructed using the transparency behavior of the
surrounding modules. Transparency provides a trade-off
mechanism between the completeness and the complexity
of the test translation process. The search is fast but it is
performed in a reduced functional space; consequently,
some inherent test translation capabilities may be lost. A
transparency definition capturing compactly most of the
test translation behavior of a module is therefore essential.

2.2 Controller challenges

Many of the reachability path solutions identified on
the standalone datapath will be invalid in the combined
design, due to the exact sequences of signals imposed by
the controller. As shown on the example circuit, the
controller generates specific signals and an FSM analysis
is required to derive valid control state sequences in
support of reachability paths. However, exhaustive FSM
analysis is expensive because of loops such as the one
between states S/ and S2 and variables such as Count.
The computational difficulty of the problem has forced
full reliance on DFT in previous attempts [3, 5] so as to
isolate the datapath from the controller. Yet, we show in
this paper that controller analysis, non-exhaustive though
it may be, could provide useful results and prevent
resorting to costly DFT.
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2.3 Controller-datapath seamless test

When design constraints prohibit DFT at the controller-
datapath interface, the following search alternatives exist:
(i) Datapath-First: The search is performed on the

datapath, and solutions are checked against the
controller.

(ii) Controller-First: The control signals of each valid
control sequence are imposed as constraints to the
datapath search.

(iii) Intertwined Search: Each decision of the datapath
search algorithm is checked immediately against the
restrictions imposed by the controller.

Even though the first two, algorithmically random
walk approaches, are simple to implement, they are
computationally ineffective. Computational effectiveness
can be attained with the third approach, albeit at the

. expense of implementation complexity. The search is still

exhaustive in both the controller and the datapath, but the
combined search space is pruned concurrently from both
sides and convergence is faster. Implementation, however,
requires a list of hopeful control state sequences to be
kept and updated for each datapath decision

A fast yet efficient alternative to the aforementioned
three approaches is introduced in the following sections.
The proposed hierarchical test scheme avoids exhaustive
search based on the concepts of rransparency channels
introduced in [7) and influence tables introduced herein.

3. Datapath

In this section, we describe various transparency
definitions and we devise a hierarchical datapath test
generation approach that addresses the complexity issues
described above by employing transparency.

3.1 Transparency definitions

The concepts of I-Path and T-path for capturing
module transparency, in terms of identity and
transformation functions respectively were introduced in
[1]. The path notion was extended in [4] through onto
functions (S-paths) for providing stimuli to a module and
one-to-one functions (F-paths) for propagating fault
responses. A hierarchical test generation scheme and a




test result propagation methodology, based on ambiguity
sets, were introduced in [8]. Complexity issues limit the
applicability of these methods to small datapath circuits.
Test knowledge extraction for hierarchical designs is
captured in terms of modes and further combined into test
translation paths in [10]. Within the context of RTL
testability analysis, the notion of rransparency channels
for capturing transparency was introduced in [7].
Transparency channels comprise a collective superset of
the /-Path, T-Path, S-Path and F-Path {1, 4] concepts,
expressing variable bitwidth transparency functions.

3.2 Channel-based hierarchical test generation

Transparency channels facilitate a powerful approach
for hierarchical test generation. The method is
independent of the actual local test generation method
employed for each module. As a result, local tests can be
modified and enhanced in order to provide higher fault
coverage, without invalidating the translation paths. The
overall efficiency of hierarchical test improves when local
test generation is guided by global design knowledge [9],
maximizing the number of translatable patterns.

A recursive design traversal algorithm is applied for
each module in the design, employing transparency
channels in order to identify test translation paths [7].
While traversing a module, available transparency
channels are probed as to their suitability for constructing
test justification or response propagation paths. Variable
bitwidth signal entities, loops and reconvergence are
considered in order to prioritize the probing of channels,
accelerating algorithm convergence. Channels on the
identified paths are combined into templates, through
which translation is rapidly performed.

4. Controller

The objective of the proposed scheme is to examine
the controller and identify control state sequences that are
appropriate for testing each module in the design. In order
to model the datapath behavior under the impact of the
controller, we introduce the concept of influence tables
that capture the structural interaction between datapath
state variables, for each state of the controller. Influence
tables are subsequently combined in order to identify
control state sequences, thus establishing reachability
paths from primary inputs to module inputs and from
module outputs to primary outputs. To avoid expensive
exhaustive controller reasoning, influence tables capture
only the topological but not the functional interaction
between primary inputs, primary outputs and state
registers of the design. The control state sequences
attained thus guarantee the existence of a reachability path
but cannot reason on its test translation capabilities.
Translation needs to be attained through a datapath
hierarchical test path identification algorithm, under the
guidance of the identified control state sequence; the
relevant approach and algorithm are discussed in section 6.
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Influence Tables for Control States: The concept of
influence tables is demonstrated through the controller-
datapath pair example of Figure (4). The datapath is given
in Figure (4)(a) and the controller is described in Figure
(4)(b). The influence tables for states SO and S3 are given
in Figure (4)(c). The top row contains the primary inputs,
state registers and relevant constant values that during this
particular state may influence the primary outputs or state
registers noted on the leftmost column. An entry in a table
location indicates that the signal entity of the
corresponding row is influenced during this particular
state by the signal entity of the corresponding column.
For example, in the influence table of state SO, register A
is influenced by the primary input INA, since LD="1".
Similarly, registers E and F are influenced by the constant
value ‘0°, since CLR=‘1" and both register G and the
output OUT are influenced by register G, since LD="0".

Conditional Influence: The influence table for state
S3 demonstrates how conditional influence is captured. In
state S3, register F of the example circuit is influenced
through the ADDER #2 by register C, under a condition
on register D. In this case, register D does not directly
influence register F, but it does control the potential
impact of register C on register F. The corresponding
table location entry is therefore not a ‘1’ but a variable
name, D, indicating the source of the conditional influence.

Data-Dependent Alternative Influence: In Figure
(4)(d) we demonstrate how the influence tables handle
alternative influence of signals. In state S/ for example,
register E and - depending on register D — either register
C or register F will influence register F through MUX #2.
In order to model this mutually exclusive behavior, the
influence table for state S7 is split into S/a and S/b, each
capturing one of the possible influences, as depicted in
Figure (4)(d). This is required only when datapath registers
such as D are used to decide among alternative influences.
In the case of MUX #1, which is controlled by a controller
signal, the resolution is automatically performed, since
distinct values on C7 indicate distinct control states.

Influence Tables for Sequences of Control States:
The effect of a control state sequence on the datapath is
obtained by combining the influence tables. An entry in
the combined table is filled if the column register
influences the row register through the control state
sequence. The combined influence table for sequence SO-
Sla is shown in Figure (4)(e). In the influence table of
state SO the primary input /NA influences register A which
in turn influences register E in the influence table of state
Sla. As a result, in the combined influence table SO-S/a,
INA influences E. The rest of the table is filled similarly.

Controller Loops: Influence tables handle loops very
efficiently, reducing the complexity of the proposed search
method. Since only a structural analysis is performed, a
finite number of tables modeling distinct iteration
influence are required. Once the maximum possible register
interaction through the loop is reached, the influence
tables remain constant. For example, Figure (4)(f) shows
the final influence table for the loop between states $5-S6,
denoted (S5-S6)*, which is achieved after one iteration.
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Figure (4): Influence table examples

5. Control state sequence identification

Influence tables capture the impact of the controller
states and sequences of states on the datapath. This
information is subsequently utilized in order to identify
control state sequences that are appropriate for testing
each datapath module. Initially, the requirements for
testing a module need to be defined. These requirements
represent the primary inputs, registers and primary
outputs that need to be controlled or observed in order to
test a particular module. For example, testing ADDER #2
of Figure (4)(a) requires observing register F and
controlling register E, register D and one of registers F
and C. The next step is to identify a state Sk at which the
test may be applied to the module. A state Sk is a valid
candidate, if the following two conditions hold:

e There exists a sequence of states ending in a
predecessor state of Sk with an influence table in
which the registers that need to be controlled are only
influenced by primary inputs. This denotes the
Justification control state sequence.
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e There exists a sequence of states starting from a
successor state of Sk with an influence table in which
the registers that need to be observed influence at
least one primary output. This denotes the
propagation control state sequence.

In the previous example, state S2 qualifies for testing
the ADDER #2, with S0-Sla being the justification and
§3-54 being the propagation control state sequence. As
shown in Figure (5), during S0-Sla, registers C, E and D
are only affected by primary inputs and during $3-54,
register F influences the primary output. Since S/a is a
predecessor state of S2 and §3 is a successor state of 52,
the control state sequence S0-S/a-52-S3-54 is an
appropriate candidate for testing the ADDER #2 module.
Appropriate control state sequences for testing other
modules in the design can be similarly obtained. These
control state sequences guarantee the existence of a
reachability path for the module under test and are further
combined with the datapath search scheme that will
evaluate the justification and propagation capabilities of
the corresponding path, as explained in the next section.
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6. Combined test path identification

The influence table analysis of section 4 provides
valid control state sequences that are appropriate for
establishing reachability paths from the primary inputs to
the module under test and from the module under test to
the primary outputs. A datapath hierarchical test path
composition methodology is still required in order to
identify the exact reachability paths and to evaluate local’
to global test translation capabilities. However,
knowledge of the appropriate control state sequence in
advance helps in guiding the datapath reachability analysis
in a pruned search space. The control signals associated
with these control state sequences are provided as
constraints to the datapath search algorithm, reducing the
number of alternative choices during hierarchical test path
identification and thus speeding up the search process.

7. Experimental results

A 3-phase experimental setup is employed for
validating the adequacy of transparency channels for test
translation and the efficiency of the proposed hierarchical
test generation scheme.

PHASE #1: The RTL description of the complete
design is synthesized and ATPG is applied on the gate-
level view, providing the global test vectors, the test
generation time, the fault coverage and the vector count.

PHASE #2: Gate-level test generation is performed
for each module. Subsequently, the proposed method for
test translation path identification is applied and the local
vectors are translated via the corresponding templates.
The results are accumulated and the total time, fault
coverage and vector count is obtained.

PHASE #3: A number of random patterns, equal to
the number of global patterns generated in phase #2, are
fault-simulated on the complete design and the
corresponding coverage is obtained.

The experimental setup has been used on three
benchmark designs, comprising simple RTL modules.
The first design is a 3-module circuit MTC100 [10], the
second design is the shift-&-add multiplier (MUL) shown
in Figure (3), and the third circuit is a pipelined multiplier
accumulator (MAC) for complex numbers [2]. The results
for these circuits are shown in Tables (1)-(3).

The combined scheme for controller-datapath Test Generation . ] . ]
hierarchical test path identification is depicted in Figure Time in (sec) Gate-Level Hierarchical !
(6). Initially, the influence tables are derived from the T3 022 :
controller-datapath description. Subsequently, a datapath . :
module is selected and an appropriate control state 13.58 4.63
sequence for testing this module is identified using the 21.30 8.87
method of section 4. If no such sequence exists, a control Table (1): Total test generation time comparison
testability bottleneck is reported; in this case no solution # of Faults NP — i
exists unless DFT hardware is incorporated in the design. Covered Gate-Level | Hierarchical ; Random
Otherwise, the identified sequence is provided in the form ~ {034 : 1038 748
of constraints to the datapath hierarchical test path
identification algorithm outlined in [7). These constraints 760 790 569
reduce the backtracking of the search algorithm, 27896 27245 22454
effectively speeding up convergence. If the testability Table (2): Fault coverage comparison
requirements of the module remain unmet, a new control # of Vectors
state sequence is requested from the controller analysis Generated . Gate-Level Hierarchical
scheme and the process repeated until either a hierarchical 146 178
test path is identified, or no more appropriate control state
sequences can be found. Examination of control state 191 198
sequences in order of increasing length helps keep test 627 703

application time low.
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Table (3): Vector count comparison
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In all three circuits, the channel-based hierarchical test
generation scheme outperforms full circuit gate-level
ATPG in terms of total test generation time. As shown in
Table (1), in the first circuit the reduction is almost of an
order of magnitude, while for the other two circuits it is
approximately 65%. Table (2) shows that fault coverage
slightly increases in the first two circuits, while in the
third example a drop of around 2.5% ensues. In all cases,
random vectors achieve significantly lower coverage. In
terms of vector count, a slight increase of the order of
10-15% is observed, as shown in Table (3), due to the
divide-&-conquer scheme. As demonstrated by these
results, transparency channels facilitate a powerful
hierarchical test generation scheme for datapath designs
that significantly reduces test generation time while
having minimal impact on fault coverage and vector
count. Evidently, the proposed scheme constitutes a
superior alternative to full circuit gate-level ATPG.

The efficiency of the combined controller-datapath
search scheme is demonstrated on two modules of the
MUL circuit shown in Figure (3). The three scarch
approaches of section 2 and the proposed methodology of
section 5 have been implemented and applied on these
modules. The search is expected to be successful on the
MULTIPLIER module where reachability paths exist for
each of the four sets of control values that are applied to
the MULTIPLIER during normal functionality. However,
the adder inputs are correlated and the search should
report that no path exists.

The CPU time' spent by each of the four search
approaches on a 266 MHz Pentium™ II with 64 MB of
RAM is shown in Table (4). The Datapath-first and
Controller-first search approaches spent a long time
before converging. Although they were able to find
solutions for the simple MULTIPLIER cases, they did not
terminate for the Control Set D case which has a
complicated solution and for the ADDER also as
expected, since no solution exists. The intertwined
controller-datapath exhaustive search performed better
than the first two approaches due to reduced backtracking.
Nevertheless, it spent a significant amount of time in
handling the ADDER case and did not terminate on the
complicated MULTIPLIER case. Finally, the proposed
methodology identified the expected solutions for all the
MULTIPLIER cases and the lack of reachability paths for
the ADDER. The time spent is almost an order of
magnitude less than the best of the alternative approaches,
verifying the power of the proposed scheme in identifying
hierarchical test paths.

'N/T entries signify no termination within 10 CPU minutes.

atapith-Firste: . | 058 ] 4.25 0.47 N/T

PRLFOIICE:First, 1797 150.00 17.52 NI

friwined Search. 0.28 . 036 027 N n
sed Scherie 0.03 i 0.0 0.0 2.98 ’

8. Conclusions

Reachability path identification in controller-datapath
circuits requires exhaustive algorithms, resulting in
excessive backtracking. Alternatively, costly DFT is
employed for separating the controller from the datapath.
To reduce this overhead, the proposed method performs a
fast, non-exhaustive search capable of identifying a large
number of inherent hierarchical test paths in such designs.
Test is devised hierarchically for datapath modules, based
on the notion of transparency channels. Additionally, an
analysis of the controller through the introduced concept
of influence tables produces valid control sequences that
are appropriate for accessing each datapath module. The
combination of these two methods results in efficient
hierarchical test generation that provides significant
speed-up, while preserving fault coverage and vector
count levels comparable to full-circuit gate-level ATPG.
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