Modular Test Generation and Concurrent Transparency-Based
Test Translation Using Gate-Level ATPG”

Yiorgos Makris

UCSD - CSE Department
La Jolla, CA 92093

Abstract

We introduce a hierarchical test generation methodology for
modular designs, employing exclusively gate-level ATPG.
Based on the notion of modular transparency, the search space
of the design is reduced to alleviate the complexity of gate-
level test generation. Although ATPG is applied at the full
circuit, faults in each module are targeted individually, while
the surrounding modules are replaced by their much simpler,
transparency-equivalent logic. As analyzed theoretically and
as demonstrated through a set of experimental data, the
proposed methodology results in significant test generation
speed-up, while preserving comparable fault coverage and
vector count to full-circuit gate-level ATPG.

Introduction

Current state-of-the-art in test generation research provides
several alternative methodologies towards improving fault
coverage or reducing test generation time. Addressing both
these constraints however, while using established tool
flows to meet time-to-market constraints, has been a
challenging and unanswered task. Fault coverage may be
boosted through Modular Decomposition and Local Test
Generation, while test generation time may be reduced
through Functional Abstraction and High-Level Translation
of locally generated vectors into global design tests.
Nevertheless, it is still impractical to employ the complete
functionality of the surrounding logic and translate test in a
vector-by-vector manner. To expedite this task, a subset of
this functionality, defined as transparency, is utilized and
symbolic test translation is performed. Transparency,
however, has to preserve adequate test translation capabilities
to ensure high global fault coverage. Additionally, utilization
of established tool flows requires a mechanism for bridging
the high-level transparency definition to gate-level tools.

The methodology proposed in this paper employs modular
decomposition for efficient local test generation and
functional abstraction for transparency-based local to global
test translation. The test translation method is based on a
comprehensive transparency definition introduced in (5).
Implementation challenges are addressed by identifying
modular transparency at the RTL and creating a
transparency-equivalent gate-level design view for each
module. Modular test generation and concurrent local to
global test translation is subsequently performed, using only
gate-level ATPG. In the rest of the paper, we summarize
related work, introduce the proposed methodology, analyze
its effectiveness and support it through experimental results.

Alex Orailoglu

UCSD - CSE Department
La Jolla, CA 92093

Praveen Vishakantaiah

Intel Corporation
Hillsboro, OR 97124

Related Work

Several gate-level and hierarchical test generation directions
have been investigated to address modern designs. Genetic
test generation algorithms, driven by fault simulation are
described in (1,11), while new deterministic approaches are
discussed in (2). Combined techniques are introduced in (12)
and parallel test generation is proposed in (10). Hierarchical
test knowledge is extracted in terms of modes in (14), which
are combined into test translation paths in (15). High-level
architectural information is used for enhancing hierarchical
test generation in (4). Finally, highly translatable local test is
generated using commercial ATPG in (13), by incorporating
global design constraints in the test generation process.

Proposed Methodology

The proposed scheme comprises two phases for each module,
as shown in Fig. 1. In the first phase, the recursive design
traversal algorithm introduced in (6) searches for RTL test
translation paths for each module. The modular transparency
behavior on these paths is captured in terms of RTL
transparency channels (5), requiring an additional RTL tool
for performing the local to global test translation. To
circumvent this requirement, the second phase generates a
simplified gate-level, transparency-equivalent design view for
each module. Within this view, the module under test is left
intact, while the surrounding modules are replaced by a gate-
level implementation of the transparency channels. Gate-level
ATPG is applied directly, generating vectors for the faults in
the module under test and concurrently translating the vectors
through the transparency logic of the surrounding modules.

Repeat V Modules

Global Design
Test Vectors for the
Module Under Test

Hierarchical
Gate-Level
Design
Description

/-\ !_._.—.—.—._.—._.—._.—--——.-—-—-—._._..—.—._.._._.i
Library of H |
Module :]
v

Trér}lls.parelncy i Transparency Channels | ! !
aanels i Required for Surrounding | !} !

i Modules on Test]

Translation Paths HE |

Hierarchical E i
RTL | Vo T H
Design i
Description | | fm———~edA=vrm——————— e — — =1
i

Transparency- \

Equivalent |

Design View |

|

]

[}

i

i

]

~
x>
2
H
~
I
e
0
H
=
a8
)
I
H
-
7
&
-~
g
-
28
8
L)
3
£
el
L)
2
2}
5
Ll
13
2
)
=
23
b
~
~
Q

FIGURE 1: PROPOSED METHODOLOGY OVERVIEW

* This work is supported in part through a research grant from Intel Corporation and the University of California MICRO program.

5-2-1

0-7803-5809-0/00/$10.00 © 2000 IEEE

IEEE 2000 CUSTOM INTEGRATED CIRCUITS CONFERENCE 75

CHANNEL DEFINITION EXAMPLE CIRCUIT

Lo
8-bit Counter | OUTI7:0}
1 E
NI7:0) w. Load & Clear
Clear

TRANSPARENCY CHANNEL #1
IN[7:0] at [t] maps identically to
QUT(7:0] at [t+1] if
[Clear][Load] [t] = constant "01"

<Signal Entity A> at <Time A>
maps through <Channel Function>
to <Signal Entity B> at <Time B>
IF <Conditions>

GATE-LEVEL EQUIVALENT

.OUTI[7:0]
(b) Basic Channel (#1)

(a) Conversion Scheme

GATE-LEVEL EQUIVALENT
Conditions Channel
TRUE runction JEEVEEHE Jcrear IN{7:0]
Load=1 e
AND TIE X'
Clear=0

TRANSPARENCY CHANNEL #2

Constant '0...0° maps identically to
OUT[7:0] at [t+1]
if [Clear] at [t] = constant *1°

TRANSPARENCY CHANNEL #3
OUT(7:0] at [t] maps identically

to OUT([7:0] at [t+1] if
[Load] {Clear] at {t] = constant *00”

GATE-LEVEL EQUIVALENT GATE-LEVEL EQUIVALENT

TIE'0" IN[7:0] TIE'X'

TIE 0" IN[7:0}

OUT(7:0]
(c) Muitiple Channels (#1 & #2) (d) Sequential Channels (#1 & #2 & #3)

FIGURE 2: GATE-LEVEL TRANSPARENCY-EQUIVALENT VIEW CREATION

Gate-Level Transparency-Equivalent View

In order to create the transparency-equivalent design view, the
transparency channels required for each surrounding module
need to be converted into gate-level logic. The conversion
scheme is depicted in Fig. 2a, where the general channel
definition and the corresponding gate-level logic are shown.
The underlying assumption supporting this conversion scheme
is that the ATPG tool will avoid the Xs during the search. Any
behavior other than the transparency channels is modeled as
an X through this conversion scheme. Only when the
conditions required for the transparency behavior are TRUE, a
non-X value is achieved. Therefore, the ATPG search is
implicitly forced to utilize only transparency behavior by
setting the conditions of the MUX to TRUE. Sequential
transparency is handled by delaying the signal appropriately.

The conversion scheme is also demonstrated on an example
circuit, a simple 8-bit counter with load and reset, which
comprises three transparency channels. Channel #1 captures
the loading capability of the counter, channel #2 captures the
clearing capability and channel #3. captures the state holding
capability. In Fig. 2b, we demonstrate the conversion of the
basic loading channel #1. If only the loading capability of the
counter is required, then the counter is replaced by the
depicted logic. During test generation, whenever the ATPG
tool needs to traverse this logic it will avoid the Xs, therefore
forcing the MUX select line to 1 and imposing the desired
behavior of loading the counter. When more than one
transparency channel is required, the MUX is controlled by a
combination of the corresponding channel conditions, as
shown in Fig. 2c. In this case, both the loading and the
clearing capability of the counter are included in the
transparency equivalent design through channels #1 & #2, and
it is left to the ATPG tool to decide which one to use each
time the substituted logic is traversed. Finally, sequential
transparency functions that hold state, such as channel #3, are
also supported in the conversion scheme, as shown in Fig. 2d.
In this case, all three channels have been included. Based on
this methodology, a gate-level transparency-equivalent design

is created for each module, wherein the module under test is
left intact, while the surrounding modules are converted into
their transparency-equivalent views.

Analysis

In this section we discuss the impact of transparency-based
test translation on fault coverage and test generation time.
Regarding fault coverage, for each fault targeted in a module,
full-circuit ATPG searches through the complete functionality
of the surrounding modules. Appropriate vector justification
and response propagation behavior is found, unless the upper
time limit is reached first. In complex designs this happens
frequently, resulting in many aborted faults. In the proposed
methodology, the search space for each surrounding module is
reduced. Inevitably, as the search is performed on a reduced
space, some behavior required for test translation may not be
present. On the positive side, however, previously aborted
faults due to time constraints may become testable because of
the reduced search space. In large and complex designs, full
circuit ATPG results in many aborted faults that the proposed
methodology has an improved chance of covering.
Additionally, it has been demonstrated in (7) that transparency
channels capture most of the test translation behavior
required. Therefore, minimal fault coverage hit, if any at all,
can be expected.

In order to analyze the impact of transparency on test

generation time, we first make the following observations:

o The time that a test generation tool spends on aborting a
fault is longer than the time it spends on proving a fault
redundant or testable.

e The time that full circuit ATPG spends on aborting a
fault in the original design is equal to the time spent by
transparency-based ATPG on aborting a fault in the
channel design. This happens because the upper time
limit per fault is independent of the design.

e The time that full circuit ATPG spends on proving a fault
redundant is on average longer than the time spent by
transparency-based ATPG, due to the larger search space.

5-2-2

76

TABLE I: POSSIBLE TEST GENERATION RESULTS

TR

nsp:

Circuit I :

Testable
Testable Testable Redurdant
Redund, Redundant Redundant

Testable
Testable Redundant

Aborted Aborted
Redundant

Redundant Aborted

e Similarly, the time that full circuit ATPG spends on
proving a fault testable is on average longer than the time
spent by transparency-based ATPG.

The above observations are used to compare the time spent on
a fault by full circuit and transparency-based test generation.
Table I summarizes all the possible combinations of test
generation outcomes of the two alternatives. Applying these
observations on each row of Table I establishes that for the
complete set of faults, transparency-based ATPG will be
significantly faster than full circuit ATPG.

Experimental Results

The proposed methodology is evaluated by means of two
distinct experiments. The first experiment examines the
adequacy of the transparency-equivalent design views for test
translation, while the second compares the proposed test
generation scheme to full circuit ATPG. The experiments are
performed on two RTL designs, a 3-module control circuit
(MTC100) originally described in (14) and an 8-bit sign-
magnitude binary multiplier comprising eight modules and a
controller, as described in (3). In this section we explain the
setup for each experiment and we discuss the results.

Exhaustive vs. Transparency-Based Translation: The setup
for the first experiment is depicted in Fig. 3. For each
design module k, we perform two ATPG runs using HITEC
(8). The first run is performed on the original design, while
the second run is performed on the transparency-equivalent
design view for module k. The vectors obtained from each
run are fault simulated on the original design using PROOFS
(9). Both during ATPG and fault simulation, only faults in

module k are targeted. Test translation efficiency is
evaluated based on fault coverage, test generation time and
vector_count comparison of the two ATPG runs. Tables II
and Il show the results for the two example circuits
respectively. Results are reported for each module and
accumulated for all modules in the bottom column of each
table. As explained in the previous section, testable faults in
the original design may be reported as redundant in the
transparency-equivalent view. On the positive side,
previously aborted faults may become testable, due to
reduced search space. The results show a significant test
generation time speedup in the proposed scheme, while
coverage remains comparable, demonstrating the adequacy
of the transparency-equivalent view for test translation.

Full Circuit vs. Transparency-Based ATPG: The setup for
the second experiment is shown in Fig. 4. For the purpose of
full circuit ATPG, HITEC (8) provides fault coverage, test
generation time and vector count. For the purpose of
transparency-based ATPG, HITEC (8) is applied on the
transparency-equivalent design view of the first module,
targeting only faults in this module. The obtained vectors
are fault simulated on the original design for all design
faults. The process is repeated for each module, this time
targeting only faults that have not been covered by vectors
obtained for previous modules. Fault coverage, test
generation time, and vector count are thus obtained for each
module and accumulated for the complete design. The
results for the two example circuits are shown in Tables IV
and V, respectively, demonstrating a significant test
generation time reduction in the proposed scheme, as
compared to full circuit ATPG. Interestingly, the speed-up
increases with the size of the circuit, since full circuit ATPG
has an increasingly larger search space to deal with than the
proposed methodology. Fault coverage not only is
comparable but furthermore improves in the case of the
binary multiplier. This is due to aborted faults in the full
chip ATPG run for which the proposed method is able to
generate tests. Vector count increases slightly in the first
design but decreases in the second, while still providing
improved fault coverage, thus demonstrating the superiority
of the proposed method over full-circuit ATPG.

Original Design

Gate-Level ATPG
Targeting Faults
in Modufe k

Gate-Level ATPG
Targeting Faults
in Module k

Fault Coverage
Test Gen. Time

Fault Coverage
" Test Gen. Time
Vector Count

Compare

L Vector Count

Transparency-Equivalent for Module k
R T

T
Transparen ransparent ||
Module1 || Module2

7
Gate-Level ATPG (Gate-Level ATPG
Targeting All Faults . Targeting
A || Remalning Faults
Fault Shuutation On Orlgir in Module k

Design Forgeting Al Favlty

Fault Coverage
- Test Gen. Time | Compare
Vectar Count

Fault Coverage
Test Gen. Time
Vectar Count

Fault Coverage C,
Test Gen. Time T,
Vector Count V,

Accumulate for
all modules

FIGURE 3: SETUP FOR EXPERIMENT #1

FIGURE 4: SETUP FOR EXPERIMENT #2

5-2-3

77

TABLE II: RESULTS OF EXPERIMENT #1 ON MTC100

Adder
Counter

64 0.067

Module
Name
ZEFlICircuit:
Areg
Adder 13 16
Control 0 0

Conclusions

We propose a methodology that reduces the complexity of
hierarchical test generation, while employing only gate-level
tools. The concept of modular transparency is utilized for
identifying test translation behavior and a gate-level
transparency-equivalent design view is generated for each
module in the design. Subsequently, gate-level ATPG tools
are applied on the simplified transparency-equivalent design
views, generating and concurrently translating test for each
module. As discussed theoretically and as confirmed by the
experimental results, the transparency equivalent design
views reduce substantially the test generation search space,
while preserving adequately the required test translation
behavior. As a result, an efficient gate-level hierarchical test
generation methodology is devised that significantly reduces
test generation time while preserving fault coverage and
vector count comparable to full circuit gate-level ATPG.

References
(1) F.Corno, P. Prinetto, M. Rebaudengo, M. Sonza Reorda, “GATTO: A
Genetic Algorithm for Automatic Test Pattern Generation for Large
Synchronous Sequential Circuits”, IEEE Transactions on Computer-

78

Module Total
Name Faults
Counter 258
Adder 657
Register 230
Total 1055
Module Total T. G. Time (sec)
Name Faults Orig. In
A0 21 (
Adder 234
Areg 143
Array 32
Mreg 91
Qreg 153
Sign 10
Mux 8
Control 142
Total 834

Aided Design of Integrated Circuits and Systems, vol. 15, no. 8, pp.
991-1000, 1996.

(2) I Hamzaoglu, J. H. Patel, “New Techniques for Deterministic Test
Pattern Generation”, Proceedings of the VLSI Test Symposium, pp.
446-452, 1998.

(3) 1. P. Hayes, Computer Architecture and Organization, McGraw-Hill,
3rd Edition, 1998.

(4) 1. Lee, J. H. Patel, “Hierarchical Test Generation under Architectural
Level Functional Constraints”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 9, pp.
1144-1151, 1997.

(5) Y. Makris, A. Orailoglu, “RTL Test Justification and Propagation
Analysis for Modular Designs”, Journal of Electronic Testing: Theory
& Applications, Kluwer Academic Publishers, vol. 13, no. 2, pp. 105-
120, 1998.

(6) Y. Makris, A. Orailoglu, “DFT Guidance Through RTL Test
Justification and Propagation Analysis”, Proceedings of the
International Test Conference, pp. 668-677, 1998,

(7) Y. Makris, J. Collins, A. Orailoglu, P. Vishakantaiah,
“TRANSPARENT: A System for RTL Testability Analysis, DFT
Guidance and Hierarchical Test Generation”, Proceedings of the
Custom Integrated Circuits Conference, pp. 159-162, 1999.

(8) T. Niermann, J. H. Patel, “HITEC: A Test Generation Package for
Sequential Circuits”, Proceedings of the European Conference on
Design Automation, pp. 214-218, 1992.

(9) T. Niermann, W. T. Cheng, J.H. Patel, “PROOFS: A Fast, Memory
Efficient Sequential Circuit Fault Simulator”, Proceedings of the
Design Automation Conference, pp. 535-540, 1990.

(10) B. Ramkumar, P. Banerjee, “Portable Parallel Test Generation for
Sequential Circuits”, Proceedings of the International Conference on
Computer-Aided Design, pp. 220-223, 1992.

(11) E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann, “A
Genetic Algorithm Framework for Test Generation”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 9, pp. 1034-1044, 1997.

(12) D. G. Saab, Y. G. Saab, J. A. Abraham, “Iterative (Simulation-Based
Genetics + Deterministic Techniques) = Complete ATPG”,
Proceedings of the International Conference on Computer-Aided
Design, pp. 40-43, 1994,

(13) R. S. Tupuri, J. A. Abraham, “A Novel Test Generation Method for
Processors using Commercial ATPG”, Proceedings of the
International Test Conference, pp. 743-752, 1997.

(14) P. Vishakantaiah, J. A. Abraham, M. S. Abadir, “Automatic Test
Knowledge Extraction From VHDL (ATKET)”, Proceedings of the
Design Automation Conference, pp. 273-278, 1992.

(15) P. Vishakantaiah, J. A. Abraham, D. G. Saab, “CHEETA:
Composition of Hierarchical Sequential Tests using ATKET”,
Proceedings of the International Test Conference, pp. 606-615, 1993.

5-2-4

