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Abstract—Extensive technology scaling has not only increased
the complexity of Integrated Circuit (IC) fabrication but also
multiplied the challenges in the Design For Manufacturabil-
ity (DFM) space. Among these challenges, detection of design
weak-points, popularly known as ‘Lithographic Hotspots’, has
attracted substantial attention. Hotspots are certain patterns
which exhibit a higher probability of causing defects due to
complex design-process interactions. Identifying such patterns
and fixing them in the design stage itself is imperative towards
ensuring high yield. In the early days of hotspot detection,
Pattern Matching (PM) based methods were proposed. While
effective in identifying previously known patterns, these methods
failed to identify Never-Seen-Before (NSB) hotspots. To address
this drawback, Machine Learning (ML) based solutions were
introduced. Over the last decade, we have witnessed a plethora
of ML-based hotspot detection methods being developed, each
slightly outperforming its predecessors in accuracy and false-
alarm rates. In this paper, we critically analyze the ML-based
hotspot detection literature and we highlight common misconcep-
tions which are found therein. We also pinpoint the underlying
reasons that have led to these misconceptions by dissecting the
ICCAD-2012 benchmark dataset, which has largely guided the
evolution of this area, and revealing its limitations. Furthermore,
we propose an enhanced version of this benchmark dataset,
which we deem more appropriate for accurately assessing hotspot
detection methods. Finally, we offer our suggestions to improve
the effectiveness of ML-based Hotspot Detection methods and
demonstrate about 5X reduction in false-alarms in comparison
to the state-of-the-art.

I. INTRODUCTION

Constant scaling and reduction in feature sizes has made

lithography more complex than ever before. Despite employ-

ing advanced Resolution Enhancement Techniques (RETs)

such as Optical Proximity Correction (OPC), multi-patterning,

phase shifted masks, etc., fabricating certain layout patterns

with high fidelity remains challenging. Such layout patterns are

commonly referred to as design weak-points or hotspots and

stem from a broad variety of underlying root causes, making

it impractical if not impossible to tune the process in order

to ensure their manufacturability. As a result, over the last

decade, Lithographic Hotspot Detection became an area of

intense interest, with a variety of methods seeking to identify

and fix the hotspots in a given layout well before tape-out

[1], thereby avoiding defects during fabrication and ensuring

high yield. Initial solutions relied on Pattern Matching (PM)

based methods [2] [3]. Such methods were found to be fast

and efficient in scanning through new layouts and identifying

previously seen hotspots; however, they failed to identify

Never-Seen-Before (NSB) hotspots. To address this drawback,

Machine Learning (ML) based methods were proposed [4] [5].

Their basic idea is to use ML algorithms to ‘learn’ from a

database of known hotspots and then make predictions on a

new layout. These methods are believed to hold great promise

in achieving high hotspot prediction rates (on both previously

known, and NSB hotspots) while keeping false positives at a

minimum.

Since their initial proposition, several flavors of ML-based

hotspot detection methods have been developed. Most of them

exhibited slight improvements in hotspot detection accuracy

and/or reduction in false alarm rate over prior works. Such

improvements were mostly obtained by using increasingly

powerful ML algorithms [6] [7], advanced feature extraction

methods [5] [8] and/or hybrid PM-ML approaches [9]. More

recently, many researchers have proposed sophisticated hotspot

detection methods using online learning [8], deep learning

[10] [11][12][13], litho-aware learning [14], etc. Such meth-

ods show hotspot detection accuracy rates upwards of 98%

with false alarm rates less than 0.5%, and claim that they

can effectively detect NSB patterns while maintaining low

false alarm rates. Despite their impeccable results, we posit
that most State-Of-the-Art (SOTA) methods are ineffective in
reducing false alarms and are incapable of detecting Truly-
Never-Seen-Before (TNSB) patterns. Moreover, our conjecture
is that such shortcomings of the SOTA methods have not been
apparent because most of them have been tested using the
ICCAD-2012 benchmark dataset.

The ICCAD-2012 benchmarks are derived from the

ICCAD-2012 fuzzy pattern matching contest [15]. While these

benchmarks were originally developed to evaluate fuzzy PM-

based hotspot detection methods, over the years they have

become the de facto standard in comparing various ML-

based hotspot detection methods. However, the literature lacks

a formal analysis of this dataset’s characteristics and/or a

justification of its appropriateness as an effective benchmark

for evaluating ML-based hotspot detection methods. To the

contrary, upon extensive analysis, we find that the test-set

of this benchmark dataset contains neither TNSB patterns

nor Hard-To-Classify (HTC) patterns, which would test the

true resilience of ML-based hotspot detection methods against

false-alarms. Therefore, the validity of the claims made by the
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various SOTA methods comes into question.

In this work, we present our views on the capabilities

and limitations of ML-based methods and we contrast them

to the communal opinion. We highlight common fallacies
pervasively found in the literature, we discuss the pitfalls that

led to these fallacies, and we offer our marching orders to-

wards improving effectiveness of ML-based hotspot detection

methods and accuracy of their evaluation. Specifically, the

main contributions of this paper include:

1) A detailed description of three key misconceptions re-

garding ML-based hotspot detection:

a) Fallacy 1: Hotspot detection on the ICCAD-2012

benchmark dataset is difficult.

b) Fallacy 2: ML-based hotspot detection methods

can detect NSB hotspot patterns.

c) Fallacy 3: The SOTA methods can effectively

prevent false alarms.

2) A detailed explanation of the underlying pitfalls, stem-

ming from the use of the ICCAD-2012 benchmark

dataset:

a) Pitfall 1: The dataset does not contain TNSB pat-

terns, hence using it to evaluate hotspot detection

rate is misleading.

b) Pitfall 2: The dataset does not contain HTC pat-

terns, hence using it to evaluate false alarm rate is

misleading.

3) Our suggestions for accurate evaluation and improve-

ment of ML-based hotspot detection methods:

a) Marching Order 1: Introduction of an enhanced

version of the ICCAD-2012 benchmark dataset

which does not suffer from the aforementioned

limitations.

b) Marching Order 2: Proposition of Early Design

Space Exploration (EDSE) as a plausible direction

for achieving detection of TNSB hotspot patterns.

c) Marching Order 3: Proposition of synthetic train-

ing set enhancement as a plausible direction for

root cause learning and false alarm reduction.

The rest of the paper is organized as follows: First, in

Section II, we review the commonly used ICCAD-2012 bench-

mark dataset, we discuss its limitations, and we introduce a

derivative thereof, which we use to support the claims made in

this paper and to facilitate more accurate evaluation of hotspot

detection methods. Then, in Sections III, IV, and V, we discuss

the three main fallacies reflected in the ML-based hotspot

detection literature. Within each section, we briefly present the

claims of previous methods, we provide a detailed qualitative

reasoning for our objections, and we quantitatively support

them with experimental results. Moreover, where relevant,

we also pinpoint the underlying pitfalls leading to these

fallacies and we provide marching orders toward development

of more effective hotspot detection methods and more accurate

evaluation strategies. Conclusions are drawn in Section VI.

TABLE I: ICCAD-2012 benchmark statistics.

Training Dataset Testing Dataset
Hotspots # Non-Hotspots # Hotspots # Non-Hotspots #

Benchmark1 99 340 226 319
Benchmark2 174 5285 498 4146
Benchmark3 909 4643 1808 3541
Benchmark4 95 4452 177 3386
Benchmark5 26 2716 41 2111

TABLE II: Proposed ICCAD-2019 benchmark statistics.

Hotspots # Non-Hotspots #
Training dataset 467 17758
Testing dataset - I 1001 14621
Testing dataset - II 64310 65523

II. CURRENT & PROPOSED BENCHMARKS

The ICCAD-2012 dataset is the most widely used bench-

mark suite for evaluating ML-based hotspot detection methods.

Specifically, they are used to test two aspects of such methods:

(1) their ability to detect NSB patterns, and (2) their ability to

keep false alarms at a minimum. However, as demonstrated in

later sections of this paper, these benchmarks lack the types

of patterns necessary to test ML-based methods on these two

criteria. Therefore, to fill the void created by the shortcomings

of the ICCAD-2012 benchmarks and to determine the true

state of ML-based hotspot detection, we propose an improved

ICCAD-2019 version of these benchmarks.

Statistics on the data distribution of the ICCAD-2012

benchmarks and the proposed ICCAD-2019 benchmarks are

provided in Tables I and II, respectively. The ICCAD-2012

dataset consists of five benchmarks, each consisting of a

prescribed Training Dataset and a Testing Dataset. These

datasets are comprised of patterns from 2 different Product

Design Kits (PDKs). The vast majority of these patterns are

obtained from a 28nm PDK, while less than 3% are taken

from a 32nm PDK.

The proposed ICCAD-2019 benchmarks consists of one

training dataset and two different testing datasets, all of them

coming from the same 28nm PDK used in the ICCAD-2012

benchmarks. For the purpose of uniformity and considering

that a small number of 32nm patterns do not play a significant

role in evaluating ML-based methods, we opted to omit them

in the new dataset. The ‘Training dataset’ and the ‘Testing

dataset - I’ include a subset of patterns from the ICCAD-

2012 benchmarks. The evident reduction in the number of

hotspots is due to the more recent lithographic models used in

simulating this dataset, which identify only the more severe

defects causing regions to be hotspots. On the other hand,

the ‘Testing dataset - II’ consists of patterns not found in the

ICCAD-2012 benchmarks. These new patterns are prepared

to ensure that they can effectively test the claims of the

contemporary ML-based hotspot detection methods. While the

Testing dataset - I is focused towards ratifying the claims of

detecting NSB hotspots (as discussed in Section IV), the Test-

ing dataset - II focuses on evaluating robustness against false

alarms (as discussed in Section V). The proposed ICCAD-

2019 benchmarks are available at [16].

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:21:59 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Test results from the ICCAD-2012 dataset.

Benchmark DAC’17 [12] TCAD’18 [11] SMACD’18 [13] Simple ML-based method
Hotspots # Non-Hotspots # Accuracy False Alarm Accuracy False Alarm Accuracy False Alarm Accuracy False Alarm

Benchmark1 226 319 N/A N/A N/A N/A 100% 0.00% 99.56% 0.00%
Benchmark2 498 4146 99.60% 0.17% 99.40% 0.10% 99.80% 0.17% 98.80% 0.00%
Benchmark3 1808 3541 98.06% 0.48% 98.29% 0.28% 99.90% 0.08% 97.84% 0.14%
Benchmark4 177 3386 96.61% 0.03% 95.48% 0.03% 99.80% 0.06% 93.79% 0.00%
Benchmark5 41 2111 97.56% 0.24% 97.56% 0.00% 95.12% 0.05% 100.00% 0.19%
Average 97.96% 0.23% 97.68% 0.10% 98.92% 0.07% 98.00% 0.07%

Train
Dataset

Feature
Extraction

(DT)
Classifier
(SVM)

Trained
Model

Prediction
Results

Test
Dataset

Feature
ExtractionDT: Density Transformation

SVM: Support Vector Machine

Fig. 1: A simple ML-based Hotspot detection method.

III. FALLACY 1: HOTSPOT DETECTION ON THE

ICCAD-2012 BENCHMARKS IS DIFFICULT

Soon after the introduction of the ICCAD-2012 dataset,

fuzzy pattern matching methods were proposed [3], achiev-

ing acceptable hotspot hit rates but high false alarm rates.

Thereafter, many methods including the use of Adaboost

classifiers [7], hybrid PM-based and ML-based solutions [9],

online learning [8], wire-distance based feature extraction [17],

litho-aware learning [14], etc., have shown improved results.

More recently, it has been suggested that deep learning is

necessary to obtain the best classification results. In [12],

authors posit that traditional feature extraction methods, such

as density transform [3], suffer from spatial information loss

due to their 1-dimensional nature. Therefore, they proposed

the use of feature tensors, which retain spatial relationships

between features, along with biased learning and batch biased

learning [11]. In [10], imbalance-aware deep learning has been

proposed to address the issue of disproportionate cardinality

of hotspots and non-hotspots in the training datasets. Several

other sophisticated methods have also been proposed in recent

years, achieving some of the best results on the ICCAD-2012

dataset.

Unlike the impression given by the SOTA, we conjecture

that hotspot detection on the ICCAD-2012 dataset is actually

not as hard as it has been portrayed. Sophisticated methods

to address the issue of dataset imbalance, feature extraction

methods, deep learning models, etc., are not required to

obtain high accuracy and low false alarm rates. In order to

demonstrate this, we implement a very simple ML-based flow,

as shown in Figure 1. We use density transform [3], one of the

simplest feature extraction methods, along with an out-of-the-

box Support Vector Machine (SVM) from [18]. We select the

hyper parameters through cross-validation, and we set the class

weights such that misclassifications on the minority class (i.e.,

hotspots) are penalized more in comparison to the majority

class. In Table III, we compare the results from our simple

flow against the results from three SOTA methods1. As shown

through this comparison, a simple ML-based method provides

similar results as the sophisticated deep learning approaches.

The source code for this flow is available at [16]. The formulas

used in this analysis are:

accuracy =
hotspot hits

total hotspots

false alarms =
false positives

total nonhotspots

We clarify that, through this analysis, we do not imply

that ML-based hotspot detection is an easy problem. To the

contrary, we believe that it is not. We also acknowledge that

all previously proposed hotspot detection methods have made

unique and important contributions which are necessary to

improve the overall quality of hotspot detection. However, as

we discuss in the next two sections, we posit that the ICCAD-

2012 benchmarks used to evaluate them are not effective in

accurately reflecting and contrasting their capabilities. As a

result, the true benefits of using deep learning and other

sophisticated methods, as opposed to simple ML-flows, remain

yet to be ascertained.

IV. FALLACY 2: ML-BASED HOTSPOT DETECTION

METHODS CAN DETECT TNSB HOTSPOTS

Authors of almost every ML-based hotspot detection paper

claim that their methods can detect NSB hotspots. We note

that, in such claims, the use of the term ‘never-seen-before

hotspot’ has been rather liberal and general, resulting in some

level of confusion. In fact, since the literature lacks a technical

definition of this term, the reach of these claims remains open

to the reader’s interpretation. Confusion stems from the fact

that two types of test patterns, namely those which are very

similar to the training patterns and those which are totally

different, can both be interpreted as NSB patterns. Let us

consider, for example, the patterns shown in Figure 2a as the

training set of a classifier and the patterns shown in Figures 2b-

e as the test set. We can observe that test hotspots Te1 and Te2
are very similar to the training hotspots, whereas test hotspots

Te3 and Te4 look entirely different. While there is a vast

difference in the ‘similarity’ of these patterns to the training

set, technically, all of them can be labeled as NSB hotspots,

banking on the fact that they are only ‘similar’ and not ‘same’

to the patterns in the training set. However, the complexity of

1Benchmark 1 was not considered in [12] and [11]. Hence, its results are
not available.
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Fig. 2: An example to contrast Truly-Never-Seen-Before (TNSB) hotspots from previously seen hotspots.
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Fig. 3: Distribution of Testing hotspots w.r.t the Training

hotspots in the ICCAD-2012 benchmarks.

detection varies drastically across these test patterns. Indeed,

if we project these training and test patterns onto a hyper-

dimensional space, their distribution would appear as shown

in Figure 2f. Patterns Te1 and Te2 would be located very

close to the training patterns, well within the known/learnt

space, thereby, making them easier to detect. Whereas, for

patterns Te3 and Te4, which are much farther away from

the known space, any ML-entity would be making a random

guess. Therefore, even though all test hotspots Te1−4 can be

called NSB, in reality, only patterns Te3 and Te4 are TNSB.

Unfortunately, the ICCAD-2012 benchmarks do not contain

any TNSB patterns. To demonstrate this, we use Principal

Component Analysis (PCA) [19]. PCA is an effective tool to

visualize the distribution of high-dimensional datasets in lower

dimensions. We perform PCA on the training dataset of the

ICCAD-2012 benchmarks and we project the test data onto the
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−10

−5

0

5

10
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a
−
3

Train Hotspot

Test Hotspot

Fig. 4: Distribution of hotspots in the Testing dataset - I, w.r.t

the Training hotspots in the ICCAD-2019 benchmarks.

same space. The first three principal components are plotted

as shown in Figure 3. For brevity, only the hotspots from both

datasets are shown. Clearly, all of the testing set hotspots lie

in very close proximity to the training set hotspots, thereby

making them easy-to-detect, just like the patterns Te1 and Te2
from our previous example. However, TNSB patterns such as

Te3 and Te4 are not found in this space. Oblivious to the

pitfall introduced by the lack of such patterns in the ICCAD-

2012 benchmarks, most previous methods which have shown

high hotspot prediction rates have created a false perception

that they can generally detect NSB hotspots, including TNSB

hotspots.

The proposed ICCAD-2019 benchmarks, on the other hand,

do contain TNSB hotspots. To visualize them, we once again

perform PCA on the Training dataset and project the Testing

dataset - I onto the same space. As shown in Figure 4, this
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TABLE IV: Test results from the proposed ICCAD-2019 benchmarks (Testing dataset - I).

Benchmark DAC’17 [12] TCAD’18 [11]
Hotspots # Non-Hotspots # Accuracy False Alarm Accuracy False Alarm

Complete test set including TNSB hotspots 1001 14621 67.83% 2.00% 77.02% 4.10%
TNSB hotspots only 164 0 14.02% Not applicable 1.22% Not applicable

test set contains two groups of hotspots which are significantly

far away from all training set hotspots. These hotspots share

the characteristics of patterns Te3 and Te4 from our earlier

example, and therefore, can be regarded as TNSB hotspots.

To determine whether the SOTA methods can indeed de-

tect TNSB hotspots, we evaluated their performance on the

proposed ICCAD-2019 benchmarks. We used the source code

from [20], trained the models using the proposed Training

dataset and tested them using the Testing Dataset - I. The

results are shown in Table IV2. We observe that both of the

SOTA deep learning methods, which have demonstrated accu-

racy rates higher than 99% on the ICCAD-2012 benchmarks,

now show a significant reduction in accuracy, mainly due to

the presence of TNSB hotspots in the test set. Furthermore,

to accurately verify their claims of being able to detect never-

seen-before hotspots, we tested their performance on just the

TNSB patterns. As shown in the table, their accuracy rates

on TNSB patterns drop below 15%. In fact, we expect the

accuracy rates of [12] to be even lower because [11], which

is an extension of [12] and regarded as a superior method,

shows much lower prediction rates. In turn, this implies that

even the 14% accuracy rate could be due to spurious/random

predictions.

This analysis corroborates our objection to the claim that

ML-based methods are effective in detecting TNSB hotspots.

This fallacy has largely gone unnoticed because the widely

used ICCAD-2012 benchmarks do not contain any TNSB

hotspots. By introducing the Testing dataset - I of the proposed

ICCAD-2019 benchmarks, we challenge the community to

reevaluate and improve their methods in order to achieve high

accuracy rates on TNSB hotspots.

We clarify that, through this analysis, we do not imply

that TNSB hotspot detection is impossible. We are, however,

of the opinion that contemporary ML-based methods alone

do not possess such abilities because their performance is

capped by the quality of training datasets [22]. We believe

that augmenting these training datasets through Early Design

Space Exploration (EDSE) tools [23] holds the potential to

turn TNSB hotspot detection into a reality.

EDSE involves generating random, but realistic, layout

patterns using just the basic design rules from the PDK.

Commercial CAD tools performing this task are already avail-

able [24]. The underlying rationale is that the random pattern

generation process could potentially generate TNSB patterns.

Such patterns could be identified, vetted using lithographic

simulations and, then, used to enhance the training datasets for

ML-based hotspot detection methods. Through this process,

2[13] is not included in this analysis because the ‘complete and working’
source code [21] of this method has not yet been made available to us by the
time of submission.

previously unknown areas of the hyper-dimensional space

could be transformed into known/learnt areas and, therefore,

could potentially make better predictions on TNSB patterns.

In-depth analysis on EDSE is outside the scope of this paper.

We direct the interested reader to [23] for further details.

V. FALLACY 3: THE SOTA METHODS CAN EFFECTIVELY

PREVENT FALSE ALARMS

ML-based hotspot detection methods were proposed as an

improvement over PM-based methods both in terms of NSB

hotspot identification and in terms of false alarm reduction.

While we already objected to the former claim, we do believe

that the latter is true and that ML-based methods have the

potential to achieve tremendous false alarm reduction. How-

ever, in our opinion, most SOTA methods are not effective in

keeping false alarms in check. We make such a claim, despite

their impeccable results on the ICCAD-2012 benchmarks,

because we posit that they have been tested on an Easy-To-

Classify (ETC) dataset. We consider the ICCAD-2012 dataset

as ETC not only because we have demonstrated that it can be

classified effectively using simple ML-based flows, but also

because of its sparsely distributed test datasets. By sparse

distribution we imply that the hotspots and non-hotspots in the

test dataset are located far away from each other in the hyper-

dimensional space. As depicted in Figure 5a, this creates an

ETC scenario where, despite the ML entity learning large areas

surrounding known hotspots as ‘hotspot regions’, it does not

make many false predictions; this is because the test hotspots

are always located in close proximity of known hotspots, while

the non-hotspots are located farther away.

In practice, however, most layout pattern databases are

dense in nature, i.e., the hotspots and non-hotspots in the

test dataset lie in close proximity to each other. Such a data

distribution arises from the fact that many patterns which look

very similar to each other, yet have minor differences between

them, can be found in the same technology node/PDK. Authors

of [25] have performed an interesting study, wherein they

compared the patterns found on test-chips, typically used by

foundries, against the patterns found in product designs. They

discovered that some of the patterns from product designs

were topologically similar to the patterns seen in test-chips,

but product designs had many more variations of the same.

Applying the findings of this study to hotspot detection, we

can consider a situation where a hotspot pattern, as shown

in Figure 5c, could be used while training a model. Then,

during the life-time of the node, this model may be tested

with many patterns which look very similar to the original

pattern, but have minor variations in them. Examples of such

variants are shown in Figure 5d. As noted in [10], even

minor nm-level variation could mean the difference between
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a pattern becoming a hotspot or a non-hotspot. Therefore,

many such variations of the original hotspot pattern could

be true non-hotspots. To visualize such a scenario, if we

project the patterns from Figures 5c-d onto a 2D space, as

shown in Figure 5b, we observe that they form a dense cluster

around the training hotspot. Due to their close proximity to the

previously seen hotspot, the non-hotspots within this region

also get predicted as hotspots, thereby giving rise to false

alarms. Such patterns are the truly HTC patterns which can

test the robustness of ML-based methods against false-alarms.

However, the ICCAD-2012 benchmarks are devoid of HTC

patterns, thereby giving the SOTA ML-based methods a false

perception of achieving extremely low false-alarm rates. On

the other hand, the Testing Dataset - II of the proposed

ICCAD-2019 benchmarks solely consists of HTC patterns. To

contrast the data distribution in the two datasets, we perform

−6 −4 −2 0 2 4 6 8 10−5
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pc
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Train Hotspot
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Fig. 7: Distribution of the HTC patterns w.r.t the Training

hotspots in the ICCAD-2019 benchmarks.

PCA on their training datasets and project their respective

test datasets (Testing dataset - II in the case of the proposed

ICCAD-2019 benchmarks) onto the same space. Since the

Testing dataset - II from the ICCAD-2019 benchmarks is

approximately 8X larger than the ICCAD-2012 test set, to

ensure fairness in the comparison, we uniformly down-sample

it and plot the same number of data-points as found in the

ICCAD-2012 test set. For the sake of brevity, and to remain

aligned with the illustrations in Figures 5a and b, only the

training hotspots, testing hotspots and testing non-hotspots

are plotted. The PCA plot of the ICCAD-2012 benchmarks

is shown in Figure 6, whereas the plot corresponding to the

proposed ICCAD-2019 benchmarks is shown in Figure 7.

By comparing the two plots, we can clearly observe that

the training hotspots in the ICCAD-2019 benchmarks are

surrounded by dense clusters of both test hotspots and test
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TABLE V: Test results from the proposed ICCAD-2019 benchmarks (Testing dataset - II).

Benchmark DAC’17 [12] TCAD’18 [11] VTS’18 [26] (With DB Enhancement)
Hotspots # Non-Hotspots # Accuracy False Alarm Accuracy False Alarm Accuracy False Alarm

Part-1 3860 4449 98.83% 96.18% 97.90% 94.56% 87.62% 18.63%
Part-2 8469 7825 99.44% 98.19% 99.57% 97.52% 90.03% 22.90%
Part-3 7552 9212 99.45% 98.52% 99.85% 98.83% 88.14% 18.17%
Part-4 8429 7102 99.71% 99.03% 99.69% 98.21% 90.66% 21.32%
Part-5 8361 7944 99.59% 97.70% 99.96% 97.48% 89.97% 19.45%
Part-6 9561 10363 99.64% 98.64% 99.69% 97.95% 87.15% 22.18%
Part-7 9027 9204 99.68% 98.60% 99.72% 98.74% 89.39% 19.32%
Part-8 7232 8034 98.92% 95.79% 98.99% 94.97% 88.33% 21.46%
Part-9 1819 1390 99.72% 97.77% 99.50% 99.06% 89.33% 26.83%
Average Values 99.44% 97.82% 99.43% 97.48% 88.96% 21.14%

non-hotspots, precisely the scenario illustrated in Figure 5b.
To determine whether the SOTA methods can indeed prevent

false alarms, we evaluated them using the proposed ICCAD-

2019 benchmarks. We used the source code from [20], trained

the models using the proposed Training dataset and tested them

using the Testing Dataset - II 3. The results are shown in Table

V. We observe that the same methods which demonstrated

false-alarm rates below 0.5% on the ICCAD-2012 benchmarks

now show average false alarm rates of about 97%. Therefore,

these results confirm our claim that the SOTA methods are not

effective in preventing false alarms.
Despite observing such high false alarm rates from recent,

deep learning-based hotspot detection methods, we believe that

ML-based methods hold the potential to prevent false alarms.

Since the performance of ML algorithms often depends on

the quality of the training dataset [22], greater emphasis must

be placed on improving the information theoretic content of

the training datasets. If many variants of known hotspots are

used during training, ML algorithms can indeed learn the fine

differences between such patterns and make much more robust

predictions. However, obtaining many variations of a known

hotspot is challenging as they may not be found in a single

design, in a small set of designs, or even in many designs

obtained from the same standard-cell libraries. They may be

found by constantly mining product designs throughout the

lifetime of the technology node, but that defeats the purpose of

generating hotspot detection models. To resolve this stalemate,

authors of [26] proposed the use of synthetic pattern generation

to actively generate many variants of known hotspots, vet them

through lithographic simulations and use them to enhance

the training datasets. They have demonstrated that synthetic

database enhancement can indeed achieve significant reduction

in false alarms.
To verify whether database enhancement could indeed re-

duce false alarms, we used the source code and implemented

the hotspot detection flow proposed in [26]. We used the

training dataset from the proposed ICCAD-2019 benchmarks

as a baseline, enhanced it using synthetic patterns, trained

a hotspot detection model and tested it using the Testing

dataset - II. The results from this experiment are also shown

3To ensure ease of sharing while abiding by the file size restrictions of
data hosting sites, the large Testing Dataset-II has been divided into 9 parts
and each part is tested individually. However, merging them and testing all at
once provides the exact same results.

in Table V. We observe that database enhancement provides

about 5X reduction in false alarms in comparison to the SOTA

deep learning methods. Based on these results, we would

like to steer the community’s efforts away from relying on

increasingly powerful ML algorithms and towards methods for

synthetically or otherwise enhancing the underlying training

dataset. In our opinion, it is extremely difficult to prevent

false alarms without using such enhancement and, through the

introduction of the proposed ICCAD-2019 benchmark dataset,

we challenge the community to reevaluate and improve their

methods in order to achieve low false alarm rates on HTC

patterns.

VI. CONCLUSION

Detection of lithographic hotspots during the design stage

of ICs is an indispensable necessity towards achieving high

yield in contemporary technology nodes. Despite the extensive

efforts of the community over the last decade, solutions that

achieve high detection rates on TNSB patterns and low false

alarm rates on HTC patterns still remain elusive, partly due

to the truly challenging nature of the problem and partly due

the three fallacies discussed in this paper. We elucidated the

pitfalls resulting in these fallacies, which stem mainly from

the inherent limitations of the popularly used ICCAD-2012

benchmark dataset, and we proposed an updated ICCAD-2019

version which alleviates these limitations. We showed that

ML-based hotspot detection is indeed an effective solution but

its performance can be significantly improved by augmenting

it with other novel methods, and we demonstrated about 5X

reduction in false alarms in comparison to the SOTA. Thereby,

we aspire to revitalize the efforts of the hotspot detection

community and to steer them towards incorporating solutions

such as EDSE and training-set enhancement, which address

the issues at the heart of the problem, namely detection of

TNSB and HTC patterns, respectively.
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