
Hardware Dithering: A Run-Time Method for
Trojan Neutralization in Wireless Cryptographic ICs

Christiana Kapatsori, Yu Liu, Angelos Antonopoulos and Yiorgos Makris
Department of Electrical and Computer Engineering

The University of Texas at Dallas
Richardson, TX 75080

Email: {christiana.kapatsori, yxl119120, aanton, yiorgos.makris}@utdallas.edu

Abstract—We introduce a hardware dithering methodology for
neutralizing Trojans in integrated circuits (ICs). The proposed
approach seeks to make the operating point of an IC an
unpredictable moving target during run time. Thereby, the
ability of a Trojan to exploit the process variation margins,
wherein hardware Trojans typically find breathing room to
operate while remaining concealed, is significantly restricted. To
demonstrate this hardware dithering concept, we leverage tuning
knobs operating on the power and frequency characteristics of
the transmission of a wireless cryptographic IC. These knobs
are driven by a random number generator, thus forcing the
circuit into a random walk in the space of its parametric
performances while in normal operating mode. In essence, while
the circuit remains within its operating specifications during this
random walk, its exact operating point varies, thus muddying
the waters for the adversary. Experimental results on the wireless
cryptographic IC, which was designed and fabricated in a 0.35µm
CMOS technology, corroborate that hardware dithering imposes
a significant and unpredictably dispersed bit error rate to the
adversary, thereby impeding hardware Trojan operation.

I. INTRODUCTION

Hardware Trojan concepts described in the extensive rele-
vant literature of the last decade [2]–[4], [18] are generally
driven by two fundamental objectives: (i) they seek to intro-
duce computational errors in the operation of a chip or even
incapacitate it, or (ii) they seek to leak information through
covert side channels, such as timing, power, electromagnetic
emanations, etc. While both of these hardware Trojan classes
pose a serious threat to the trusted and secure operation of
contemporary electronics, the silent nature of the latter, which
incurs no evident interference with correct functionality of a
circuit, makes it much more challenging to defend against.

As a result, numerous methods have been proposed for
detecting hardware Trojans which establish and/or exploit
covert side channels [1], [3], [7]. The vast majority of these
methods rely on a statistical approach known as side-channel
fingerprinting. In this approach, a parametric signature, typ-
ically consisting of continuous-domain measurements such
as power, delay, temperature, electromagnetic interference, or
combinations thereof, is obtained for a suspect chip and statis-
tically compared against a distribution of signatures originating
from known Trojan-free (golden) chips. Advanced statistical
side-channel fingerprinting methods have pushed the envelope
via sophisticated machine learning-based solutions for increas-
ing classification accuracy [9], [15], reducing or eliminating

reliance on golden chips [7], [10], and even providing real-time
hardware Trojan monitoring through on-die classifiers [12].

Nevertheless, statistical fingerprinting remains a reactive
approach, which can only detect Trojans that leak information
through covert side channels once such leakage has already
taken place. In many cases, such detection may already be
too late, as even a very small bandwidth may suffice to
compromise security and privacy by leaking cryptographic
keys, credit card numbers, personal identification numbers,
or other sensitive data. Therefore, proactive methods which
seek to prevent either insertion or robust operation of hardware
Trojans are also required to ensure security and trust.

To this end, in this paper we introduce hardware dithering,
a prevention method which seeks to challenge the operational
underpinnings of hardware Trojans that utilize covert side
channels and, thereby, to neutralize them. Specifically, the key
contributions of this work include:

• Introduction of hardware dithering as a hardware Trojan
neutralization method and description of its underlying
philosophy for preventing robust Trojan operation.

• Detailed implementation of hardware dithering in the
context of a wireless cryptographic transmitter.

• Experimental impact and effectiveness characterization of
hardware dithering using over-the-air measurements from
fabricated Trojan-free and Trojan-infested versions of the
aforementioned wireless cryptographic transmitter.

We note that we chose the wireless cryptographic IC domain
as a platform for demonstrating hardware dithering for two
reasons: (i) encrypted sensitive and confidential information
is typically exchanged in this domain, making it an attractive
attack target, and (ii) such exchange takes place over public
communication channels, making it a plausible attack target,
without requiring physical access to the IC. However, the
operating principles of hardware dithering are independent of
this domain and can be generally applied to protect any circuit
from covert side-channel Trojans.

II. SIDE-CHANNEL TROJAN OPERATION

The fundamental enabler of covert side-channel hardware
Trojans is the inherent process variation of semiconductor
manufacturing. Indeed, the acceptable margins allowed in the
performances of a chip population, in order to compensate for
the inability to precisely control the IC fabrication process,
provide breathing space for such Trojans.

Paper 6.3
978-1-5386-8382-8/18/$31.00 c©2018 IEEE

INTERNATIONAL TEST CONFERENCE 1

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

Perf1

Perf2
Acceptable
performance space

δ

Design center
(ideal chip)

min

min

max

max

Noise-affected
chip performances

Trojan-induced
performance offset

Chip instances affected
by process variations

chip i

Fig. 1: Operating principle of covert side-channel Trojans.

Consider, for example, a simple design with two continuous-
domain performances, Perf1 and Perf2, as shown in Fig.
1. While the targeted design center is a single point in the
space of these two performances, fabricated chips will exhibit
a distribution of performances around this design center due to
process variation. Therefore, minimum and maximum values
are defined for each performance in order to specify the region
wherein acceptable chips are expected to operate. Within this
space, operation of each fabricated chip is represented by a
single point, depending on how it has been affected by process
variation. However, to account for operational fluctuations and
measurement noise, a small window around each such point
is used to reflect its operating region.

Let us now consider a hardware Trojan which seeks to
establish a covert side channel using these two performances,
in order to leak information. All the hardware Trojan needs
to do is to systematically induce an offset in the operating
point of a circuit. Indeed, consider chip instance i in our
example, which in addition to its original operating point, can
also be controlled by a Trojan to operate at an offset point. As
long as the offset δ exceeds normal operating fluctuations and
measurement noise, the Trojan has successfully established a
covert communication channel. Specifically, by encoding logic
‘0’ on the original operating point and logic ‘1’ on the offset
operating point (or vice versa), the Trojan can now leak data
through the two performances of the chip, by systematically
jumping between its two operating points.

Inconspicuousness of such Trojans stems from the fact that
both operating points are within the acceptable performance
space established for dealing with process variations. Indeed,
in the eyes of the unsuspecting user, the minute fluctuation
between the two operating points is perceived as increased
operational or measurement noise and will not trigger an
alarm, as the chip remains within its acceptable performance
space. In the eyes of the knowledgeable attacker, however, this
fluctuation is sufficient for retrieving the leaked data.

We emphasize that information leakage through such covert
channels is based on the offset between the two operating
points, not their actual values. Indeed, as the hardware Trojan
is introduced prior to fabrication, the exact operating point of
each chip is unknown. Therefore, the attacker may only rely
on the offset induced by the Trojan. We also note that, in this

Perf1

Perf2

min

min

max

max

chip i
ks: knob setting

ks1

ks2

ksn

Fig. 2: General concept of hardware dithering.

example, we only used one offset operating point, as this is the
minimum required for differentiating between the two possible
values of a leaked bit. Additional offset points may potentially
be used to increase the density of information encoded on the
circuit operating point.

III. HARDWARE DITHERING

While the simple motivational example of the previous
section highlights the operating principle of hardware Trojans
which establish covert side channels, it also points at a
possible solution for preventing their robust operation. More
specifically, it reveals the need for a stable operating point
for a chip, subject only to small operating fluctuations and
measurement noise. This is an indispensable requirement, as
the offset from this stable point is the mechanism through
which such Trojans can encode and leak information.

Accordingly, the proposed hardware dithering method seeks
to challenge availability of such a stable operating point.
In essence, as depicted in Fig. 2, hardware dithering sends
the circuit on a random walk within the space of its per-
formances. During this walk, the chip remains within its
design specifications, yet its exact operating point changes
continuously. Thereby, the stable reference operating point
becomes a moving target and any offsets computed during
this walk are distorted by a random component. Hence, their
ability to robustly encode and leak information is diminished.

To implement hardware dithering, various tuning knobs
must be added to the circuit, in order to modulate its perfor-
mances. During normal operation, these knobs are driven by
random value sequences, forcing the circuit into the aforemen-
tioned random walk. While knob implementation and random
value generation details may vary, effective hardware dithering
relies on the following constraints:

• Legitimate operation of the circuit should remain unaf-
fected by hardware dithering.

• Selection and design of tuning knobs must be Trojan-
agnostic, i.e., it should have no knowledge of and make
no assumptions about the operation of Trojans, except
that they seek to leak data through circuit performances.

• Tuning knobs should be an inherent part of the design, so
that an attacker may not simply identify and remove them

Paper 6.3 INTERNATIONAL TEST CONFERENCE 2

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

Add
Round Key

Shift Rows
Sub Bytes &
Mix Columns

Key Expansion
Logic

REG

Output
Buffer

AES Encryption Core

Ciphertext

Send

Clk

Plaintext_in

Key_in

Baseband Pulse
Generator “1”

Baseband Pulse
Generator “0”

RF Pulse
Generator “1”

RF Pulse
Generator “0”

PA

Ciphertext

UWB Transmitter

Performance
calibration

knobs

(a)

(b) (c)

Hardware
Dithering

DAC

PW0 PW1 f0 f1

2n-1

address

Dithering
knob

values

0

Non-volatile memory“1”

“0”

Channel noise

Random
number

generator

ENSend

Fig. 3: (a) System-level block diagram of the wireless cryptographic IC, (b) transmission voltage while sending “1” and “0”,
and (c) dithering implementation.

during Trojan insertion. In other words, correct operation
should rely on some value provided through these knobs.

• The attacker should not be privy to the random sequence
of values used to drive the tuning knobs. Therefore, these
values should be programmed in each chip after it is
fabricated, through the use of non-volatile or other one-
time-programmable memory.

• The attacker’s ability to extract the leaked information
from covert side-channel measurements in the presence
of hardware dithering should be significantly hindered.

IV. EXPERIMENTAL PLATFORM

To demonstrate hardware dithering we use as a starting
point the wireless cryptographic benchmark design developed
in [11]. This design consists of a digital and an analog part im-
plementing an advanced encryption standard (AES) core and
an ultra wide-band (UWB) transmitter, respectively. Below,
we first review its normal operation, and then describe the
modifications required for implementing hardware dithering.

Normal Operation: A system-level block diagram of the
design is shown in Fig. 3(a). The AES core receives plaintext
in blocks of 128 bits, which it encrypts using a 128-bit key that
is loaded through the key_in input and stored on-chip [11].
After ten rounds of transformation, the plaintext is encrypted
into ciphertext, which is stored in an output buffer in blocks
of 128 bits, until it is transmitted. The output buffer serializes
the ciphertext before sending it to the UWB transmitter. The
UWB transmitter comprises a baseband pulse generator, an
RF pulse generator and a power amplifier (PA). As shown in
Fig. 3(b), transmission of a logic 1 signal has higher amplitude
and higher frequency than transmission of a logic 0.

Performance Calibration Knobs: Most contemporary
high-performance analog/RF IC designs are inherently
equipped with performance calibration knobs which are tuned
after manufacturing in order to ensure high yield in the pres-
ence of process variations [13], [14], [16]. The exact values of
these tuning knobs are individually chosen for every IC and
are either physically adjusted (e.g., laser resistor trimming) or,
more commonly, permanently stored through non-volatile or
one-time-programmable memory.

In the case of our wireless cryptographic IC, four tuning
knobs exist as an inherent part of the design, in order to
adjust the performances of each chip to its specifications after
production. These four knobs, namely PW0, f0, PW1, and f1,
come in the form of bias voltages and act on the amplitude and
frequency characteristics of the wireless transmission. Two of
them (PW0, f0) control the “0s” and two (PW1, f1) control
the “1s”. PWi operates on the baseband pulse generator of the
UWB transmitter and controls the gate terminals of nMOS
transistors. With higher PWi values, the current that flows
through the corresponding branches is increased; thereby, so
does the amplitude of the transmitted signal. On the other
hand, fi mainly determines the frequency of the RF pulse
generator, again by controlling branch currents.

Inherent Knob Utilization for Hardware Dithering: To
implement hardware dithering, we exploit the presence of the
above four tuning knobs to drive the cryptographic transmitter
into an unpredictable, random walk in the space of the
transmission performances (i.e., amplitude and frequency), in
order to reduce the robustness of any covert side-channel. To
this end, we implemented the system depicted in Fig. 3(c),

Paper 6.3 INTERNATIONAL TEST CONFERENCE 3

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Normal operation w/o dithering

Normal operation w. dithering

text=1 text=1

text=0 text=0

text=0 text=0

text=1 text=1

Consistent
subject to noise

Slight differences
due to dithering

Fig. 4: Dithering effect on normal IC operation.

which consists of: (i) a random number generator, and (ii) a
non-volatile memory (NVM). The random number generator
[5], [17] produces a random sequence wherein each value is
used as an address to access the NVM. Each NVM entry
contains a code (i.e., a vector of four digital values) for the
four knobs. These knob codes are then provided to a digital-to-
analog converter (DAC) which produces the analog voltages
that determine the biases for knobs PW0, PW1, f0, and
f1. Transmission amplitude and frequency are adjusted per
bit. Therefore, among the knob values stored in the NVM, a
different setting is applied to every bit.

We emphasize that the knobs and the DAC are an inherent
part of the original cryptographic IC [11], with programmable
constant values enabling adjustment of its operation across
different specification requirements. Thus, they cannot be
removed by an adversary, as the circuit will not be operable
without them. Hence, only the random number generator and
the NVM are exclusively added for the purpose of dithering.

We also note that the use of an NVM rather than a ROM
is preferred for two reasons. First, attackers implanting HTs
should not have access to the code values stored in the NVM,
as they could potentially use this knowledge to evade the
proposed scheme. Therefore, the codes need to be programmed

Fig. 5: Experimentation platform.

in the NVMs after the chips are manufactured. Second, due
to manufacturing process variations, these values may slightly
vary across chips, in order to ensure that, for each code, the
circuit remains within its acceptable operating region.

The acceptable range of voltage values for each of the knobs
and, by extension, the set of acceptable codes, is defined by the
specifications of the UWB transmitter and can be determined
prior to fabrication through Monte Carlo simulations. Among
the many possible values in this set, the entries of the NVM for
a specific chip are eventually selected based on two criteria: (a)
for any chosen code, transmission of ciphertext bits of value
“1” should remain robustly distinguishable from ciphertext bits
of value “0”, and (b) the subset of chosen codes should result
in a uniform distribution of transmission characteristics (i.e.,
amplitude and frequency) in their acceptable space.

As demonstrated in Fig. 4, where four ciphertexts of “1”
and “0” are plotted versus time before (top) and after (bot-
tom) dithering is applied, normal operation of the IC is not
impacted. Depending on the knob value, dithering may either
increase or decrease transmission amplitude and frequency for
both ciphertexts. However, it does not affect the ability of a
receiver to correctly receive data bits, since ciphertexts “1”
and “0” always remain distinguishable.

The described wireless cryptographic design, including the
proposed hardware dithering capabilities, has been fabricated
in TSMC’s 0.35µm CMOS process. As shown in Fig. 5,
our experimentation platform consists of a custom-designed
PCB, which houses the wireless cryptographic chip with the
hardware dithering knobs, as well as an oscilloscope. An
antenna is connected to the transmitter’s output in order to
enable wireless communication. Another antenna connects to
the oscilloscope, which acts as a receiver.

V. THREAT MODEL & SAMPLE TROJAN

A. Threat Model
The general threat model considered in this work is depicted

in Fig. 6 and consists of three entities, namely Bob, Alice and
Eve, whose role is described below:

• Alice is a legitimate user who transmits information over
a public wireless channel. Alice’s transmitter has been
contaminated by an adversary, either in the design or
in the fabrication stage. The hardware Trojan which has
been embedded in the wireless device creates a covert
side-channel which aims to leak additional information

Paper 6.3 INTERNATIONAL TEST CONFERENCE 4

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

Alice

1 0 0 1
Bob

Eve 1 0 0 1

Fig. 6: Threat model.

by systematically modulating the parameters of the pub-
licly accessible transmission. For example, Alice may be
transmitting ciphertext and the hardware Trojan may be
leaking the encryption key. Alice is not aware that a
malicious operation is taking place.

• Bob is the legitimate entity that Alice is communicating
with. As such, he is able to receive the data transmitted
over the public channel but he is oblivious to the fact that
additional information has been transmitted by Alice. In
our example, where Alice is transmitting ciphertext, Bob
is unaware that the key is also leaked through a covert
side-channel of the transmission. In fact, Bob already
possesses the key and is able to decipher the transmission.

• Eve is the malicious entity (rogue receiver) who seeks to
receive the information leaked by the hardware Trojan in
Alice’s transmitter. Eve is not necessarily the person who
embedded the hardware Trojan, yet Eve is collaborating
with that person. As such, Eve is privy not only to
the Trojan’s presence in Alice’s transmitter but also
to the exact mechanism through which it establishes a
covert side-channel through the publicly available wire-
less transmission. In fact, Eve is sufficiently intelligent to
effectively retrieve the information leaked by the Trojan
despite the noisy wireless channel conditions and the
unique way in which process variations have affected
Alice’s transmitter during fabrication. Eve achieves this
by using self-referencing, i.e., by relying on offsets rather
than absolute values, as well as by employing statistical
information retrieved from previously received data. In
our example, Eve knows that the encryption key for
Alice’s ciphertext is leaked by modulating the wireless
transmission parameters (e.g., amplitude, frequency) in a
specific way and can, thus, retrieve it and compromise
the encrypted communication between Alice and Bob.

B. Sample Trojan

To evaluate effectiveness of hardware dithering, we contam-
inated our wireless cryptographic IC with a sample hardware
Trojan, which we designed and implemented based on the
principles of the attacks introduced in [11]. This Trojan leaks
the AES key by reading it from the register wherein it is stored
and passing it to the transmitter. Therein, a handful of added
transistors use the key bit values to modulate transmission
amplitude and frequency. Specifically, regardless of the cipher-
text value being transmitted, when the key bit being leaked
is equal to “1” the Trojan increases slightly the amplitude
and frequency coefficients of the transmission, creating the

Fig. 7: Trojan operation.

offset required for establishing a covert channel, as discussed
in Section II. Operation of the Trojan is depicted for six bits
in Fig. 7, with measured amplitude and frequency annotated
on each bit.

In order to retrieve the leaked key bits, a rogue receiver
relies on the knowledge that the Trojan has introduced some
positive offset in the 2-dimensional amplitude and frequency
space. This offset is depicted in Fig. 8, where we plot the nor-
malized frequency and amplitude levels for one transmission
consisting of 128 bits1. As may be observed, the Trojan impact
is more prominent on amplitude when the ciphertext is equal
to “1” and on frequency when the ciphertext is equal to “0”.
The rogue receiver collects all these values and statistically
analyzes them to retrieve the leaked key. In our case, a simple
k-means clustering algorithm with k = 4 suffices for per-
fectly interpreting both the ciphertext and the key values. We
reiterate that the Trojan does not interfere with the legitimate
receiver’s ability to correctly interpret the ciphertext values.
Indeed, as shown in Fig. 8, the small offset introduced by
the Trojan leaves plenty of separation between the ciphertext
“1” (top/right) and ciphertext “0” (lower/left) measurements.
Therefore, the simple thresholds typically employed by the
unsuspecting legitimate receiver will perfectly classify these
two populations.

VI. EXPERIMENTAL RESULTS

Using the experimental platform described in Section IV, we
evaluate the effectiveness of hardware dithering in preventing
information leakage by the sample Trojan described in Section
V-B. Specifically, we quantify (i) the number of errors that the
rogue receiver experiences due to hardware dithering when
retrieving the leaked key, and (ii) the distribution of errors
across the bit locations of the transmitted 128-bit packets. We
note that, theoretically, maximal effectiveness is achieved when
50% of the transmitted bits are received erroneously and the
probability of an error occurring at a specific location of the
128-bit packet is 0.5.

We started by repeating the transmission of the same 128-
bit ciphertext (encrypted with the same 128-bit AES key) as in
the experiment depicted in Fig. 8, only this time with hardware

1We note that many of these 128 bits have identical amplitude and frequency
values and, thus, overlap in the plot.

Paper 6.3 INTERNATIONAL TEST CONFERENCE 5

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Fig. 8: Retrieving the leaked key.

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Fig. 9: Dithering effect on Trojan operation.

dithering enabled. The resulting amplitude and frequency mea-
surements obtained by the rogue receiver are plotted in Fig. 9.
As may be observed, by forcing the transmitter into a random
walk wherein amplitude and frequency are uniquely perturbed
for each ciphertext bit transmission, hardware dithering sig-
nificantly hinders the ability of the rogue receiver to correctly
retrieve the leaked key. While four distinguishable clusters are
still observed, several transmitted bits have moved between
cluster 1 and cluster 2, as well as between cluster 3 and
cluster 4. Accordingly, for all such cases, the rogue receiver
misinterprets the leaked key bit. Notably, despite hardware
dithering, a large space remains between the ciphertext “1”
(top/right) and ciphertext “0” (lower/left) populations; hence
the ability of the legitimate receiver to distinguish them
remains unaffected.

We then transmitted 100 randomly chosen 128-bit packets
and calculated the number of bit errors occurring per packet
at the rogue receiver after applying the clustering approach
for retrieving the key bits. As shown in Fig. 10, the number
of bit errors per packet ranges between 40 and 80 out of
128, whereas at the same time the legitimate user does not
experience any errors. On average, the bit error rate per

0 20 40 60 80 100
Packet ID (#)

0

20

40

60

80

100

120

Bi
t E

rro
s (

#)

Fig. 10: Number of bit errors for 100 over-the-air transmis-
sions of 128 bits each.

0 20 40 60 80 100 120
Bit Position (#)

0

10

20

30

40

50

60

Bi
t E

rro
rs

 (#
)

Fig. 11: Number of bit errors in each of the 128 bit positions
for 100 over-the-air transmissions.

transmission is calculated at 49.3%, which is very close to
the ideal theoretical value of 50%.

Finally, in Fig. 11, we show the number of errors that
occurred in each bit position of the transmitted 128-bit packets,
over the same 100 over-the-air experiments. On average,
each of the 128 positions experienced 50 errors among the
100 transmissions, leading to a probability of exactly 0.5.
Combined with the aforementioned bit error rate of 49.3%,
this result confirms that hardware dithering has minimized the
information that may be retrieved by the rogue receiver and
has, effectively, neutralized the hardware Trojan.

VII. RELATED WORK

The limited hardware Trojan prevention literature follows
two directions. In the first direction, solutions seek to occupy
empty space and unused resources in order to deprive attackers
from the ability to hide a Trojan. For example, BISA [19]
fills all empty space in a layout with functional standard
cells, implementing additional functionality independent of the
original design. Similarly, the FPGA-based protection scheme
presented in [8] fills unused FPGA resources with low-level
dummy logic, so that no free configurable resources exist for
inserting a hardware Trojan in the design bit-stream. While
these methods raise the difficulty level, an experienced attacker
may still be able to identify the superfluous structures in
the layout file or the FPGA bit-stream and remove them
to make room for a hardware Trojan, or may introduce the
Trojan at earlier design stages (e.g., through 3rd-party IP).
Furthermore, such structures may significantly increase static

Paper 6.3 INTERNATIONAL TEST CONFERENCE 6

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

power consumption or even interfere with IC performances
due to parasitics, especially in analog/RF ICs. In the second
direction, which is closer to the hardware dithering approach,
noise injection is used to thwart Trojan operation. For example,
the attenuated signature noise injection method proposed in [6]
uses a linear dropout regulator (LDO) to desensitize supply
current from the encryption operation and, thereby, suppress
data leakage through AES current traces. Besides defending
only against power side-channels, the key limitation of this
method is that the LDO is added exclusively for this purpose,
rather than being an indispensable part of the AES design.
Therefore, an adversary may remove it in the fabrication stage.

In contrast, hardware dithering: (i) is effective against
intelligent hardware Trojans which create covert side-channels
to leak information without violating any IC specifications, (ii)
is Trojan-agnostic and can defend against attacks aiming to
exploit process variation margins independent of the stage they
are introduced in, and (iii) is based on tuning knobs which are
integral to the design and cannot be removed, as this would
result in a non-functional circuit.

VIII. CONCLUSION

Hardware Trojans that leak sensitive information through
side channels exploit the performance margins allowed for
coping with process variations and rely on systematically
induced offsets in the operating point of a fabricated chip,
in order to establish a covert channel. Hardware dithering
diminishes robustness of such hardware Trojans by challeng-
ing their fundamental requirement of a stable operating point,
induced offsets from which can encode and leak data. More
specifically, through use of calibration knobs which modulate
the performances of a fabricated chip, alongside with a random
number generator and an NVM which provides a sequence of
tuning knob values, hardware dithering sends the circuit on a
random walk within the acceptable range of its performances.
Thereby, while normal functionality remains unaffected, ran-
domness added to the side channel through which information
is being leaked distorts the offsets and, by extension, the leaked
data. Effectiveness of hardware dithering was experimentally
evaluated through over-the-air measurements using a hardware
Trojan leaking the AES key from a wireless cryptographic IC
fabricated in a 0.35µm CMOS technology. As demonstrated,
while the hardware Trojan operation is perfectly robust in
the absence of hardware dithering, activation of the proposed
prevention method results in approximately half of the bits
in every transmitted packet becoming corrupted. Furthermore,
considering that such corruption occurs equiprobably across
the bit-positions of a packet, the information theoretic content
of the data received through the covert channel is minimized
and the Trojan is, effectively, neutralized.

ACKNOWLEDGMENT

This research has been partially supported by the Semi-
conductor Research Corporation under contract SRC 2625.001
and the National Science Foundation under award NSF
1527460.

REFERENCES

[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan
detection using IC fingerprinting. In IEEE Symposium on Security and
Privacy (SP), pages 296–310. IEEE, 2007.

[2] A. Antonopoulos, C. Kapatsori, and Y. Makris. Trusted Analog/Mixed-
Signal/RF ICs: A Survey and a Perspective. IEEE Design Test, 34(6):63–
76, Dec 2017.

[3] S. Bhunia, M. Abramovici, D. Agrawal, P. Bradley, M. S. Hsiao,
J. Plusquellic, and M. Tehranipoor. Protection Against Hardware Trojan
Attacks: Towards a Comprehensive Solution. IEEE Design Test, 30(3):6–
17, 2013.

[4] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. Hardware
Trojan Attacks: Threat Analysis and Countermeasures. Proceedings of
the IEEE, 102(8):1229–1247, 2014.

[5] S. Callegari, R. Rovatti, and G. Setti. Embeddable ADC-based true
random number generator for cryptographic applications exploiting
nonlinear signal processing and chaos. IEEE Transactions on Signal
Processing, 53(2):793–805, 2005.

[6] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and
S. Sen. High efficiency power side-channel attack immunity using
noise injection in attenuated signature domain. In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
62–67, 2017.

[7] J. He, Y. Zhao, X. Guo, and Y. Jin. Hardware Trojan Detection Through
Chip-Free Electromagnetic Side-Channel Statistical Analysis. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, PP(99):1–
10, 2017.

[8] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi. FPGA-Based
Protection Scheme against Hardware Trojan Horse Insertion Using
Dummy Logic. IEEE Embedded Systems Letters, 7(2):46–50, 2015.

[9] F. Koushanfar and A. Mirhoseini. A unified framework for multimodal
submodular integrated circuits Trojan detection. IEEE Transactions on
Information Forensics and Security, 6:162 –174, 2011.

[10] Y. Liu, K. Huang, and Y. Makris. Hardware Trojan detection through
golden chip-free statistical side-channel fingerprinting. In ACM/IEEE
Design Automation Conference, pages 1–6, 2014.

[11] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris. Silicon Demonstration
of Hardware Trojan Design and Detection in Wireless Cryptographic
ICs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25(4):1506–1519, 2017.

[12] Y. Liu, G. Volanis, K. Huang, and Y. Makris. Concurrent hardware
trojan detection in wireless cryptographic ICs. In IEEE International
Test Conference (ITC), pages 1–8, 2015.

[13] Y. Lu, K. S. Subramani, H. Huang, N. Kupp, K. Huang, and Y. Makris. A
comparative study of one-shot statistical calibration methods for analog
/ RF ICs. In 2015 IEEE International Test Conference (ITC), pages
1–10, 2015.

[14] C. Maxey, S. Raman, K. Groves, T. Quach, L. Orlando, A. Mattamana,
G. Creech, and J. Rockway. Mixed-signal SoCs with in situ self-healing
circuitry. IEEE Design Test of Computers, 29(6):27–39, 2012.

[15] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. G. Wolff, C. A.
Papachristou, K. Roy, and S. Bhunia. Hardware Trojan detection
by multiple-parameter side-channel analysis. IEEE Transactions on
Computers, 62(11):2183–2195, 2013.

[16] V. Natarajan, S. Sen, A. Banerjee, A. Chatterjee, G. Srinivasan, and
F. Taenzler. Analog signature-driven postmanufacture multidimensional
tuning of RF systems. IEEE Design Test of Computers, 27(6):6–17,
2010.

[17] B. Sunar, W. J. Martin, and D. R. Stinson. A provably secure true
random number generator with built-in tolerance to active attacks. IEEE
Transactions on Computers, 56(1):109–119, 2007.

[18] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor.
Hardware Trojans: Lessons Learned After One Decade of Research.
ACM Trans. Des. Autom. Electron. Syst., 22(1), May 2016.

[19] K. Xiao and M. Tehranipoor. BISA: Built-in self-authentication for
preventing hardware Trojan insertion. In IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pages 45–50, 2013.

Paper 6.3 INTERNATIONAL TEST CONFERENCE 7

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:26:58 UTC from IEEE Xplore. Restrictions apply.

