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Abstract— Information flow tracking (IFT) is a widely used
methodology for ensuring data confidentiality and/or integrity in
electronic systems and many such methods have been developed
at various software or hardware description levels. Among them,
Proof-Carrying Hardware Intellectual Property (PCHIP) intro-
duced an IFT methodology for digital hardware designs described
in hardware description languages (HDLs). However, it is not only
the digital domain that suffers from the risk of inadvertent infor-
mation leakage. Indeed, analog signals originating from sources
of sensitive information such as biometric sensors, as well as
analog circuit outputs could also carry confidential information.
Moreover, analog circuits are equally susceptible as their digital
counterparts to malicious modifications, known as hardware
Trojans, which could introduce covert channels for leaking such
confidential information. Furthermore, in analog/mixed-signal
circuits, such information leakage channels may cross the ana-
log/digital or digital/analog interface, making their detection
even harder and, thereby, intensifying this security concern.
As a solution, we introduce a PCHIP-based methodology which
enables systematic formal evaluation of information flow policies
in analog/mixed-signal designs. This solution can reason on
analog designs described at the transistor-level or at the block-
level, where an abstract model of the analog circuit is considered.
Additionally, it can handle analog circuit models developed in
Verilog-A or Verilog-AMS, thereby enabling the use of circuit
models developed in these HDLs for IFT purposes. By integrating
IFT across the digital and analog domains, the proposed solution
is able to detect sensitive data leakage from the digital domain to
the analog domain and vice-versa, without requiring any modi-
fication of the current analog/mixed-signal circuit design flow.

Index Terms— Information flow tracking, analog/mixed-signal
design, hardware trust, hardware Trojans, information leakage.

I. INTRODUCTION

INFORMATION flow tracking (IFT) [1] is a methodology
for tracking the propagation and/or the usage of sensitive
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or untrusted data in computer systems. The main objective
of IFT is to ensure the confidentiality and/or the integrity of
sensitive data, by verifying that they do not get contaminated
by untrusted sources and/or they do not reach unauthorized
sites. In its basic but fundamental form, IFT augments each
data element with sensitivity tags. Additionally, it defines
rules (known as information flow policies) for propagating
and manipulating these sensitivity tags in accordance with the
operations performed on their corresponding data elements,
and it restricts the usage of data with specific tags to authorized
sites. Initial IFT methodologies focused on software [1] while
considering hardware as the root of trust. Later efforts in
this domain sought to take advantage of hardware entities to
improve IFT performance [2]. Even more recently, such efforts
have been further driven by the realization that hardware
vulnerabilities, introduced either through inadvertent errors or
through malicious tampering, can lead to major security risks
[3]. As a result, several IFT-based methods [4]–[12] were
introduced to evaluate and ensure the security of hardware
at various abstraction levels.

Existing hardware IFT methodologies are limited to designs
in the digital domain and lack support for any type of analog
computation. Yet, analog and mixed-signal designs are also
susceptible to hardware attacks, whereby confidentiality and/or
integrity of sensitive data may be endangered. In fact, leaking
secret information from the digital domain through system-
atic modification of analog performances has already been
successfully demonstrated in previous studies [13], wherein
carrier frequency or transmission power manipulation in an
RF transmitter was used to leak secret encryption key data.
As mixed-signal IC designs become widespread due to the
ubiquitousness of wireless technologies, such as Bluetooth and
Wi-Fi, and as simple digital I/Os of the past are being substi-
tuted by high-speed links which extensively combine analog
and digital techniques for noise reduction or channel distortion
compensation [14], this problem exacerbates. In addition,
as mixed-signal designs become more complicated, adver-
saries are afforded more opportunities for implanting such
malicious capabilities, which often require no more than a
single transistor or capacitor [13], [15]. Furthermore, design
errors in the analog/mixed-signal portion of a circuit, which as
reported by the author in [16], account for approximately 20%
of all bugs in the design cycle of modern microprocessors,
may also pose security threats. Therefore, developing an
IFT approach which can handle analog/mixed-signal designs
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becomes paramount, as it can assist in revealing potential
information leakage paths and, thereby, instilling trust in such
designs.

To this end, in this paper we introduce an IFT method-
ology which is capable of seamlessly crossing the ana-
log/digital boundary. More specifically, by extending the
previously developed Proof-Carrying Hardware Intellectual
Property (PCHIP) method from the digital domain [9], [17],
[18] to the transistor-level, we create a unified framework
for enforcing information flow policies in digital, analog,
and mixed-signal designs. Furthermore, we introduce analog
IFT capabilities at a higher level of abstraction, namely the
block-level. Such capabilities are particularly important for
two reasons. First, they can increase accuracy, as the very
fine granularity of transistor-level IFT, in conjunction with the
conservativeness of the PCHIP-based method, makes it prone
to false positives. Second, they can facilitate early security
evaluation of designs, long before the detailed transistor-level
implementation is made available. Additionally, we enhance
our PCHIP-based methodology to recognize analog constructs
used for modeling analog behavior in Verilog-A and Verilog-
AMS. This enables designers to leverage analog circuit mod-
els, which are usually developed for design verification, for the
purpose of IFT evaluation. We acknowledge that the accuracy
of block-level IFT depends on the details accounted for in the
block-level models. Nevertheless, transistor-level IFT can still
be used for a more detailed evaluation of the design once the
transistor-level implementation is available.

The rest of this paper is organized as follows. Section II
further motivates the need for IFT in mixed-signal designs
by exploring an example. Section III reviews related work.
Section IV depicts the threat model considered in this work.
Section V briefly describes the digital PCHIP-based IFT
framework. Section VI introduces the proposed IFT extension
for analog designs at both the transistor- and the block-level.
Section VII discusses the integration of the proposed analog
IFT with the digital PCHIP-based IFT framework. Section VIII
demonstrates our method’s ability to reveal sensitive informa-
tion leakage in three analog/mixed-signal designs. Discussion
and conclusions are provided in Section IX.

II. MOTIVATIONAL EXAMPLE

Due to existence of process variations, the performance
specifications for analog and mixed signal designs are not very
tight and cover a range of acceptable values. This creates many
opportunities in the analog domain to hide covert channels
for leaking sensitive information, without compromising the
design specification. Such covert channels can vary the circuit
performance parameters just enough to leak the information
and remain undetected in testing. As an example, Fig. 1
shows a simple ultra-wide band (UWB) transmitter which uses
advanced encryption standard (AES) to encrypt the data before
transmission. However, it creates a covert channel by varying
the transmission power and leaks the secret key in addition to
transmitting the encrypted data [13]. Other analog performance
parameters, such as carrier frequency, can also be employed for
this purpose. We present a few other examples in Section VIII.

Fig. 1. A Trojan which adds a transistor in the power amplifier to leak
information by varying transmission power, along with its leakage path.

Such possible exploitation of the analog domain, along with
the potential existence of undetected design bugs, underline the
need for a methodology that can track the flow of sensitive
information in a mixed-signal design as a whole. While there
are plenty of techniques applicable in the digital part, to the
best of our knowledge, such a capability is lacking in the
analog and mixed signal domain. This work seeks to fill this
gap and is considered as a first step toward establishing a
framework capable of information flow tracking in digital,
analog, and mixed-signal designs.

III. RELATED WORK

Many IFT approaches have been introduced at various soft-
ware or hardware description levels. In this section, we briefly
review a handful of them and contrast them to the method
proposed herein.

At the software level, static IFT methods enforce informa-
tion flow policies on a program at compile-time based on
logical inference and reasoning [19]. In contrast, dynamic IFT
schemes are applied during program execution and benefit
from the availability of more detailed run-time information,
yet at the cost of incurring performance and memory overhead
[20]. In a different direction, towards reducing the perfor-
mance overhead of IFT and improving accuracy of information
flow policy enforcement, hardware-assisted IFT schemes were
introduced [2]. The gate-level IFT (GLIFT) approach proposed
in [4] refines the conservative rules used by higher-level
IFT methods and implements more realistic tag computation
operations. Thereby, it realizes a precise hardware-assisted IFT
approach, at the cost of increased hardware overhead.

Various methodologies have been also introduced to evalu-
ate trustworthiness of digital hardware designs. In this direc-
tion, several language-level approaches have been introduced,
seeking to enforce information flow policies on hardware
designs. For example, Caisson [5] is a hardware description
language with static information flow verification capabilities
at design time. Sapper [6] provides a language which employs
static analysis at compile-time but also inserts dynamic checks
in the resulting hardware in order to enforce information flow
policies. SecVerilog [10] enforces information flow policies
by introducing a type system. It is essentially Verilog, which
has been extended with type annotations. SecVerilog provides
an accurate information flow model by supporting dependent
security types (i.e., tags defined as a function of signal values).
By extending the type system of SecVerilog, authors in [11]
verified isolation properties in a multi-core prototype of the
ARM TrustZone architecture, demonstrating applicability to
large designs with modest effort. Similarly, an extension
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which provides secure sharing of hardware resources at a fine
granularity and does not require implicitly added hardware to
enforce security, is demonstrated in [12].

A method which detects hardware Trojans leaking sensitive
information based on gate-level IFT (GLIFT) [4] is introduced
in [21]. At a higher level of abstraction, register transfer level
IFT (RTLIFT) [7] has also been introduced to verify secu-
rity properties in hardware designs. Although effective, these
methodologies require exploration of the entire signal/value
space using a SAT solver and/or a model checker, or incor-
poration in simulation based testing of the design. Along
this direction, Clepsydra [8] introduced a formal modeling
approach to distinguish timing-based information flows from
functional flows in hardware designs described by HDL codes.

Various other approaches have been proposed in the past for
formally reasoning on analog/mixed-signal functionality. For
example, Booleanization of analog circuits has been utilized
for formal state exploration of the design characteristics [22],
[23]. Similarly, an effort to create a framework for formal
verification of analog/mixed signal designs based on symbolic
computation was presented in [24].

All of these methodologies, however, are either IFT solu-
tions limited to the digital domain or are functional veri-
fication methods which do not consider IFT in the analog
domain. To the best of our knowledge, the solution proposed
herein is the first attempt to develop an IFT method for
analog/mixed-signal circuits. Our approach creates a unified
framework for IFT in analog/mixed-signal designs which can
handle various levels of abstraction seamlessly, based on a
previously developed PCHIP-based IFT solution for the digital
domain, which we briefly review in Section V.

IV. THREAT MODEL

The methodology described in this work seeks is to identify
sensitive information leakage through the physical primary
outputs of analog/mixed signal designs due to intentional
malicious modification or inadvertent design flaws. Accord-
ingly, we assume that the integrated design is available for
analysis. Therefore, the digital parts of the design are needed
as the HDL code, and the analog portions are required at
the transistor-level or at higher level models. The information
leakage can occur in digital or analog form. We do not consider
timing side-channels in this work. Also, we do not consider,
at least not directly in the proposed methodology, analog
side-channels leaking to signals other than the primary outputs
of a designs, e.g., side-channels created on power rails. Despite
that, we do provide a mechanism for the designers to check
for sensitive information leakage to internal signals of a design
(except for power rails). If carrying a sensitive value was not
intended for a signal, yet it is marked as sensitive by the
proposed IFT approach, it could show potential existence of
a side-channel on those signals. Confirmation, in this case,
requires detailed mixed-signal simulations.

V. PCHIP-BASED IFT IN THE DIGITAL DOMAIN

In this section, we review the fundamentals of the
PCHIP-based IFT method for digital designs. The PCHIP

Fig. 2. PCHIP framework [25], [26].

framework [25], which is shown in Fig. 2, seeks to ensure
trustworthiness of hardware designs delivered as HDL code,
such as 3rd party hardware intellectual property (3PIP),
by accompanying the hardware with formal proofs for a set of
security properties. These properties, which are agreed upon
by the developer and the consumer of the 3PIP, are crafted in a
way that prevents malicious and/or unauthorized functionality
in the design. In addition to preparing the hardware design,
3PIP developers are also tasked with writing proofs for these
security properties, which are delivered to the consumer as
part of the trusted hardware package. Since formal reasoning
is not directly possible in HDLs, PCHIP defines rules for
converting the hardware design to a formal representation
[26], such as Coq [27], which provides an environment for
mechanized proof construction and checking. In the general
PCHIP framework, the exact functionality of the HDL code
is converted to the formal representation. This is necessary
for proving general security properties for which reasoning on
the result of the computation is required, such as verifying
correctness of instruction execution in a microprocessor [28].

For the purpose of enforcing information flow policies
on digital hardware designs, however, the exact functionality
of operations may not be necessary. Therefore, PCHIP also
introduced a special framework [9], [17], [18] wherein the
functionality of operators is omitted in order to simplify
proof development. For example, all binary operators, such
as addition, logical AND, etc., are converted to the same
formal representation. Instead of focusing on the functionality,
this approach maintains the exact structure of the design
and focuses on the flow of information. To facilitate IFT,
a sensitivity level is assigned to each signal and is maintained
in a centralized sensitivity list. Information flow policies,
which are defined for each operator, are then used to update
the sensitivity list through evaluation of the hardware in its
converted formal representation. Using this formal structural
representation and the sensitivity list, security properties pre-
venting the leakage of sensitive information in digital circuits
can be developed and proven.

The process of converting the HDL design to a formal
representation, developing security properties, and construct-
ing proofs can be burdensome, as it requires significant
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Fig. 3. Automated PCHIP framework for information flow policies [18].

effort and expertise in formal methods and proof writing.
To simplify the use of PCHIP for enforcing information
flow policies, we developed an automated framework named
VeriCoq-IFT [9], [18]. As shown in Fig. 3, VeriCoq-IFT
is able to automatically convert the Verilog design to the
Coq representation, generate security property theorems for
preventing sensitive information leakage and construct their
proofs. It gathers all the required information, such as input
sensitivity levels and sensitivity-reducing operations through
special comments (pragmas) inserted into the HDL code.
Therefore, designers simply need to annotate the HDL code
and provide the design to VeriCoq-IFT. The generated proofs
for the security properties are, then, automatically checked in
Coq in order to verify design trustworthiness in terms of infor-
mation flow policies. Rules in Fig. 3 represent functions and
lemmas developed for the evaluation of the Coq representation
of the design and construction of the proofs.

To elaborate further, consider the Verilog source code
of Fig. 4 which defines two simple modules. The special
comment in line 5 defines the initial sensitivity level of the
inp signal as 1. A higher number means that the signal
carries more sensitive information. While a procedure to
determine this value is discussed in our earlier studies in [17],
[18], in summary, the initial sensitivity levels are set to the
minimum number of sensitivity reducing operations that a
signal can go through before reaching an output in a genuine,
high-level implementation of a design. The special comment
in line 21 defines the eXclusive-OR operation of line 22 as a
sensitivity reducer.

Fig. 5 shows the Coq representation produced by VeriCoq-
IFT for the Verilog source code of Fig. 4. In this represen-
tation, all signals are considered as buses, identified by a
natural number which shows their place in the sensitivity list.
As an example, line 23 defines inp as number 1, occupying
the second place in the sensitivity list at line 33. Note that,
as expected, its initial sensitivity level is also defined as
coqSome 1. Since there is no annotation of initial sensitivity
level for other signals in the Verilog source code of Fig. 4,
coqNone is used for their sensitivity level in the list of lines
31-36 in Fig. 5.

Fig. 4. An example Verilog source code.

Fig. 5. Coq representation, security property theorem and proof generated
by VeriCoq-IFT for Verilog code of Fig. 4.

Lines 3-20 in Fig. 5 define module types and the structure of
Verilog modules in Coq representation. The ebinop construc-
tor is used for binary operations, such as in lines 13 and 22 in
the Verilog source, while econb is used to convert a bus to
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an expression. The ereduce constructor in line 19 is used
for a sensitivity reducing operation in the Coq representation.

The check_code_sen function used in line 39 of Fig. 5
evaluates the code in the Coq representation based on the
initial sensitivity list and a conservative data flow model
defined in VeriCoq-IFT, and returns an updated list. Since
there is no sensitivity enhancing operation in this framework,
evaluation of the Coq representation will eventually result in
a list where further evaluations do not change the sensitivity
values. VeriCoq-IFT calls this a stable list and uses it to prove
the security property theorems. The Coq representation of
Fig. 5 also shows the security property for the out signal
in lines 46-50. This theorem ensures that the sensitivity level
of this signal remains zero at all times, meaning that out
does not carry sensitive information. The proof of this theorem
is presented in lines 51-68 and is based on code evaluation
(before reaching the stable list) and induction (after reaching
stability). Verification of the proof for this design fails in Coq,
since one bit of the sensitive input inp does not go through a
sensitivity reducing operation before reaching out. We note
that it is possible to generate such theorems for any signal in
the design and verify its sensitivity level.

VI. IFT IN ANALOG SIGNAL DESIGNS

While PCHIP-based IFT and VeriCoq-IFT have been
shown to be very useful and effective in digital designs,
such as cryptographic hardware, they are unable to handle
analog/mixed-signal circuits. To this end, in this section,
we follow the conservative approach used in the digital domain
[9], [17], [18] and we develop similar information flow models
for handling analog signals. Together with the information
flow policies of the digital domain, these models enable
the application of PCHIP-based IFT to analog/mixed-signal
designs. We introduce IFT for analog circuits at two levels
of abstraction, namely the transistor-level IFT in Section VI-
A and the block-level IFT in Section VI-B. In addition,
in Section VI-C, we discuss a possible sensitivity reducing
operation, which is used in the PCHIP-based IFT framework to
decrease the sensitivity level of signals resulting from specific
operations in the analog domain.

A. Transistor-Level IFT

Unlike digital designs which make extensive use of standard
cell libraries, analog designs are commonly handcrafted at
the transistor level. To enable IFT in the analog domain,
we need to either perform IFT at the transistor level or model
high-level analog modules (e.g. amplifiers, mixers, etc.) from
the transistor level design and perform IFT at the block level
(Section VI-B). In order to gain a fundamental understanding
of analog signal flows at the finest granularity, in this section
we consider implementing analog IFT at the transistor-level.
Below, we list several considerations of transistor-level analog
IFT:

• In analog circuits, information may be carried not only
through voltage but also through current.

• Unlike in digital designs, wherein transistors are used as
switches, analog circuits involve transistors in various

Fig. 6. MOSFET configurations in amplifiers and possible data flows.

Fig. 7. BJT configurations in amplifiers and possible data flows.

configurations. For example, a MOSFET in an ampli-
fier can be used in a common source, common gate
or common drain configuration, as shown in Fig. 6,
thereby producing gate-to-drain, drain-to-source, or gate-
to-source data flows, respectively. Moreover, changing
voltage on the source or the drain impacts the drain-
to-source current. Similarly, a bipolar transistor can also
be utilized in several configurations, as shown in Fig. 7,
thereby creating various corresponding data flows. A tran-
sistor may also be used as an active load or a capacitor.

• The voltage on the bulk terminal of a transistor may also
be manipulated to leak information to the source or drain
terminals.

• Other components, such as capacitors, resistors, etc.
should also be considered for information flow.

Based on these considerations, we define our information
flow policies for analog circuits as listed in the following:
MOSFETs: a) Any sensitive value on the gate terminal is
transferred to the drain and the source. b) Any sensitive value
on the bulk terminal is transferred to the drain and the source.
c) Any sensitive value on the source terminal is transferred to
the drain and vice versa.
Bipolar Transistors: a) Any sensitive value on the base ter-
minal is transferred to the emitter and the collector terminals.
b) Any sensitive value on the emitter terminal is transferred
to the collector and vice versa.
Capacitors, inductors and resistors: Any sensitive value on
one of the terminals is transferred to the other terminal of
these components. The reason for this is that such components
usually do not have polarity and can be used in any orientation.
If required, data flow in transformers can also be defined
similarly by considering them as multi-terminal components.
Diodes: Since a voltage change on any terminal of a diode
can change the current through it, diodes in our conservative
data flow model are treated similar to resistors and capacitors.

In any of these components, if a terminal is connected
to the power supply, we ignore possible data flow to it.
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Fig. 8. Data flow from the input to the output of an amplifier through resistor,
capacitor and NMOS transistor.

Fig. 9. MOSFET used as a capacitor at various voltages [31]. Vt and V f b
are threshold and flat-band voltages respectively.

Therefore, nodes connected to the power supply cannot carry
sensitive data in our information flow model. Note that one
sneaky method of leaking information is through side-channels
created by systematic variation of currents in internal nodes
of a circuit [29], [30]. While, in this model, our methodology
cannot automatically reveal such side-channels, we provide
a mechanism for manual designer annotation [18], in which
suspicious internal nodes can be marked; subsequently, the-
orems attesting that those nodes do not leak any sensitive
information can be generated and evaluated automatically in
our framework.

In cases where a MOSFET is used as a capacitor, its source,
drain and bulk terminals are shorted and form one terminal
of the capacitor. The gate of the transistor serves as the
other terminal of the capacitor, as shown in Fig. 9. Typically,
in MOSFETs we do not consider a data flow to the transistor
gate. However, if a transistor is used as a capacitor and none of
its terminals are connected to the power supply, such as in AC
coupling capacitors depicted in Fig. 8, such a flow may exist
and may be missed by our model. Indeed, as shown in Fig. 9,
the gate-bulk voltage does not have polarity restrictions; hence,
a transistor can be used as a capacitor in any orientation.
Therefore, before performing IFT, we replace all transistors
whose source, drain and bulk terminals are shorted, with a
capacitor.

B. Block-Level IFT

In the previous section, we introduced a transistor-level IFT
approach for analog/mixed-signal designs. IFT at such low
level can detect all possible flows of sensitive information.
However, due to its conservative approach, it increases the
chance of false positives, i.e., situations where a flow does not
exist but IFT at the transistor-level detects such a flow. Also,
a transistor level circuit may not be available at the early stages

Fig. 10. Block-level information flow in a differential amplifier.

Fig. 11. Block-level information flow in an analog mixer.

Fig. 12. Block-level information flow in an analog to digital converter (ADC).

of the design. In addition, AMS bugs, which may also lead to
security vulnerabilities, often occur at the interface between
digital and analog components [16]. Therefore, it is useful
to raise the level of abstraction for IFT in analog designs,
in order to provide flexibility for the designers, create a means
for early evaluation of the design, and reduce the chance of
false positives.

Similar to transistor-level components, we can devise rules
for the flow of information in analog blocks, e.g., in an
amplifier or in an analog mixer. As an example, Fig. 10 shows
the information flow in a differential amplifier at the block-
level. As can be seen, a sensitive value on any of the inputs
is transferred to the output of the amplifier. Similarly, Fig. 11
shows the information flow in an analog mixer. As another
example, Fig. 12 shows the block-level information flow in a
4-bit analog-to-digital converter (ADC), in which a sensitive
analog input is transferred to all output bits. Information flow
in other analog blocks can also be defined accordingly.

Another way of implementing a block-level IFT for analog
designs is to employ models developed in Verilog-A/AMS.
To facilitate verification of large mixed-signal designs, design-
ers may develop models representing the functionality of
analog blocks using analog modeling constructs in Verilog-
A/AMS. Commonly, these analog models are simulated in
conjunction with the corresponding transistor-level circuit to
ensure consistency of the models with the actual imple-
mentation of the circuit. These models can also be utilized
for our IFT task. In the following, we describe how the
fundamental Verilog-A/AMS constructs can be converted to
the Coq representation for the purpose of IFT, based on our
conversion methodology for digital designs.

Specifically, by treating the real and integer variables as
bus, we can convert assignments to these variables similar to
the assignments to the digital signals. However, analog contri-
bution statements which are used inside analog constructs
in Verilog-A/AMS require further elaboration.
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In Verilog-A/AMS, a branch is defined as a path between
two nets. The branch contribution operator <+ is used to
describe analog behavior [32]. The right-hand side of this
operator is an expression which can be evaluated as a real
value. The left-hand side specifies the signal that the right-hand
side will be assigned and consists of a signal access function
applied to a branch. For example:
V(n1, n2) <+ expression;
or
I(n1, n2) <+ expression;

In these examples, (n1,n2) represents an unnamed source
branch, V(n1, n2) represents the potential on the branch
(i.e., voltage), and I(n1,n2) refers to the flow through
the branch (i.e., current). Note that, if the second net is
omitted, the global reference node (ground) is considered as
the reference net. As an example:
V(out) <+ Gain * V(inp);

sets the voltage on the out node (i.e., signal) to the value
of Gain parameter times the voltage on the inp node. Since
the second node in V(out) is omitted, the ground node would
be the reference.

To convert these analog contribution statements to the Coq
representation for IFT purposes, we break them down and
convert them to two separate assignments to n1 and n2.
Therefore, any sensitive value on the right-hand side will
be transferred to both nets. Note that all nodes and signals,
discrete or continuous, are considered as buses in our IFT
approach. Also, for function calls, such as sin, ddt , etc.,
as well as signal access functions used on the right-hand side,
we consider the sensitivity level of the function parameters to
evaluate the resulting sensitivity of the expression. In addition,
indirect branch assignments, such as
V(out): V(in) == 0;

which means “find V(out) so that V(in) == 0” [32], are
handled similar to a regular analog contribution statement.

Based on these basic conversion rules, along with the
methodology for the digital designs described in Section V,
the Verilog-A/AMS model of an analog design can be con-
verted to a Coq representation and evaluated for IFT policies.
Details regarding the integration with the IFT in the digital
domain are provided in Section VII.

We want to emphasize that, although IFT at the block-level
reduces the complexity as compared to the transistor-level,
it may miss some of the flows due to possible inaccuracy
of the block-level models and, thereby, introduce false neg-
atives. Therefore, it is advantageous to perform IFT at the
block-level in early stages of the design process and recheck
the transistor-level implementation when the design is final-
ized.

C. Sensitivity Reducing Operations in Analog

As we mentioned in Section V, VeriCoq-IFT defines special
sensitivity reducing operations which a user needs to mark
in the Verilog code. For the digital domain, we consider the
eXclusive-OR operation between intermediate results and the
key (or sub-keys) as a sensitivity reducer. Although encryption
in the digital domain is much more secure than in the analog

domain, there also exist efforts in the analog domain which
may qualify some operations as sensitivity reducers.

For example, the methods suggested by the authors in [33],
[34] for encryption in the analog domain consist of generating
a signal with secret characteristics, such as frequency and
phase. These characteristics can also be selected based on a
digital code [34]. We can consider this signal as equivalent
to the secret key for encryption in the digital domain. Conse-
quently, the analog encryption is performed by combining this
signal with the signal we want to encrypt, i.e., the plaintext,
which is also analog, using an analog mixer, and the resulting
encrypted signal is transmitted through a carrier on a public
channel. Therefore, mixers in such configurations can be
considered as analog sensitivity reducers.

VII. INTEGRATION WITH DIGITAL PCHIP-BASED IFT

To enable IFT in analog/mixed signal designs, we need an
integrated IFT framework capable of handling both analog and
digital designs. VeriCoq-IFT, which we reviewed in Section V,
provides an automated PCHIP-based IFT framework for the
digital domain. It receives the design as Verilog code and
generates a formal representation of the design along with the
security theorems needed to enforce information flow policies
and their proofs, which can then be evaluated in Coq. To take
advantage of this framework for our purpose, we need to:
(i) have a Verilog netlist of the analog/mixed-signal design,
(ii) define transistor-level/block-level analog data flow poli-
cies in VeriCoq-IFT, and (iii) be able to handle and use
Verilog-A/AMS models for IFT.

Generating the Verilog netlist of a design is straightforward
using current EDA tools for analog/mixed-signal design devel-
opment. For integrated analog/mixed-signal PCHIP-based IFT,
we prefer to have the digital part of the design at the register
transfer-level or the gate-level, and the analog part at the
transistor-level or the block-level. Conveniently, current EDA
tools support designs described at various abstraction levels
and provide capabilities to select the level of netlisting.

To enhance VeriCoq-IFT with analog data flow policies,
such as the ones described in Section VI, we create modules
which mimic such data flow. These modules are defined just
for the purpose of IFT and do not have meaningful interpreta-
tions in the digital domain. However, by using them, VeriCoq-
IFT is able to seamlessly handle IFT in analog/mixed-signal
designs. To elaborate further, Fig. 13 shows sample module
definitions for modeling IFT in capacitors, NMOS and NPN
transistors. It also shows a module mimicking block-level
information flow in differential amplifiers. As a simple exam-
ple, consider the nch module which represents an NMOS
transistor wherein the analog data flow has been modeled by
defining two assignments for the drain and source terminals.
Instead of the logical AND, any other binary operation could
also be used in these assign statements.

In this approach, nodes connected to the power supply are
also handled correctly based on the defined analog information
flow policy; indeed, when extracting the design netlist, such
nodes are constantly connected to zero or one values, hence
VeriCoq-IFT always assigns a sensitivity level of zero to them.
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Fig. 13. Sample module definitions to mimic analog data flows
in VeriCoq-IFT.

The rest of the procedure for enforcing information flow
policies on a design remains the same as in the digital domain.
Designers need to specify the sensitivity level of input signals
and mark the sensitivity reducing operations in the design
through special comments defined by VeriCoq-IFT. If any
sensitivity reducing operation is required in the analog domain,
it is also defined by annotating the corresponding modules
which reflect the analog information flow. Once the annotated
Verilog code of the analog/mixed-signal design is provided to
VeriCoq-IFT, the corresponding formal representation, theo-
rems and proofs to be verified in Coq are seamlessly generated.

To take advantage of analog models developed in
Verilog-A/AMS, we enhanced Vericoq-IFT to be able to
handle analog constructs as described in Section VI-B. As
an example, Fig. 14 shows a simple amplifier model in
Verilog-A/AMS. It uses several analog contribution statements
to model input and output parasitics. Fig. 15 shows the
corresponding Coq representation for this amplifier model
generated by the analog-enhanced VeriCoq-IFT. As can be
seen, analog contribution statements are converted to the Coq
representation similar to the digital assignment statements.
While parameters were added in the module definition in
the Coq representation, since they represent constant values,
a constant sensitivity is considered for them in the expressions.

It is worth noting that, with the enhanced VeriCoq-IFT, it is
also possible to employ the analog models of transistor-level
components such as MOSFETs or capacitors, which may
have already been available in Verilog-A/AMS model libraries,
as transistor-level IFT models. With this approach, we do not
need to utilize modules mimicking the information flow at the
transistor-level, such as the ones shown in Fig. 13.

Fig. 16 shows VeriCoq-IFT enhanced with IFT in the analog
domain. With the enhancements, VeriCoq-IFT can handle
analog/mixed signal designs seamlessly and facilitates IFT at
various abstraction levels with minimal user intervention.

Fig. 14. A simple amplifier model with parasitics in Verilog-AMS [32].

Fig. 15. Coq representation generated by VeriCoq-IFT for Verilog-AMS
code of Fig. 14.

Fig. 16. VeriCoq-IFT enhanced with IFT in the analog domain.

VIII. DEMONSTRATIONS

In this section, we apply the proposed methodology and
we demonstrate its ability to reveal information leakage paths
in analog/mixed signal designs.1 We verify the effectiveness
of IFT using both transistor-level implementations and analog
models developed in Verilog-AMS.

A. Information Leakage From Digital to Analog Domain

The first design that we experiment with is a wireless
cryptographic IC consisting of an advanced encryption stan-
dard (AES) core and a UWB transmitter [13], whose block

1We clarify that this method is only able to detect such paths if they are
present in any abstraction level of the design netlist. Malicious capabilities
introduced after the design is sent for fabrication (i.e., via mask modification)
cannot be detected unless a chip is reverse-engineered to a netlist first.
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Fig. 17. The block diagram of a wireless cryptographic IC design [13].
Numbers represent the propagated sensitivity levels.

Fig. 18. Proof verification for the output in the clean design of Fig. 17 in
Coq IDE.

diagram is shown in Fig. 17. Authors in [13] introduced
two Trojans in this design in order to leak the secret AES
key while transmitting the ciphertext (both of which are
128 bits long). This is achieved by a slight yet systematic
modification of the carrier frequency or transmission power,
without violating the design specifications, as we previously
mentioned in Section II. Using this circuit, we demonstrate
a scenario wherein sensitive information is leaked through a
side-channel from the digital domain to the analog domain.
A Trojan-free and two Trojan-infested versions of this design
were evaluated, as we describe below.

1) Trojan-Free Design: This design does not contain any
sensitive information leakage paths to a digital or analog out-
put. Given the design, we first extracted its Verilog netlist and
annotated the Plaintext and Key signals with appropriate
sensitivity levels. We also marked the corresponding sensitivity
reducing operations in the AES core. Then, using VeriCoq-
IFT, we converted the design to the formal representation and
used Coq to evaluate the automatically generated proof for
the security theorem asserting the sensitivity of the design
output. The proof of the security property theorem for the
output passes in Coq, as shown in Fig. 18, attesting that this
output never leaks sensitive information, under the provision
that the initial sensitivity values and sensitivity reducing oper-
ations were annotated correctly in the design. For illustration
purposes, Fig. 17 also shows the sensitivity levels propagated
in this design, where ‘0’ signifies a non-sensitive signal.

To demonstrate IFT at the block-level, we also utilized a
model of the analog blocks in Verilog-AMS. Considering these
models along with the digital part, we converted the design to
the Coq representation utilizing VeriCoq-IFT. Again, checking

Fig. 19. Transistors added to enable information leakage through varying
carrier frequencies in RF pulse generators.

Fig. 20. Proof verification fails in Coq IDE for the output in the design
leaking the secret key by varying the carrier frequency.

of the proof for the output in this design passes in Coq,
showing that no sensitive information is leaked.

2) Carrier Frequency Trojan: This design contains a hard-
ware Trojan which uses a few added transistors in the “RF
pulse generators” to vary the carrier frequency based on the
value of the leaked AES key bit, which is tapped from the key
storage register, as shown in Fig. 19. By evaluating this design
using the enhanced VeriCoq-IFT, we observe that the proof
does not pass in Coq, as shown in Fig. 20. Here, the tauto
(tautology) tactic expects a True proposition but encounters a
False proposition, preventing the proof checking to continue.
As we specified in Section V, the theorem and its proof is
devised in two parts. The first part of the theorem, which
is shown below, deals with the sensitivity of the Out sig-
nal after reaching a stable sensitivity list, while the second
part (after

∧
) considers the sensitivity of this signal before

reaching a stable sensitivity list:
Theorem Out_secrecy: forall (t: nat),

(fst stable) < t ->
is_safe_op_bus_sensitivity

(read Out (check_sensitivity t))∧
is_safe_bef_stable_Out.

In this theorem, stable is a tuple returned by the
find_stable_list function and its first member, returned
by (fst stable), represents the time stamp at which the
code evaluation reaches the stable sensitivity list. Therefore,
(fst stable) < t indicates a precondition showing t is
greater than the time stamp we reach the stable sensitivity list.
The part after -> enforces that the Out signal does not carry
sensitive information, i.e., its sensitivity is zero, at all times
t, after reaching the stable sensitivity list. After applying the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:20:11 UTC from IEEE Xplore.  Restrictions apply. 



424 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 2, JUNE 2021

Fig. 21. Information leakage path in Trojan varying carrier frequency.

Fig. 22. Trojan of Fig. 1 with the propagated sensitivity levels.

lemmas developed in VeriCoq-IFT to prove this part, we get
to the point where we need to verify that the sensitivity of
the Out signal is actually safe in the stable sensitivity list we
found for this design. The vm_compute tactic tries to do
this by reading the sensitivity value of the Out signal from
the stable sensitivity list for this design and comparing it to
zero. Since the stable sensitivity list we get by evaluation of
this design contains a non-zero value for the Out signal, this
tactic results in a False proposition, leading to a failure in the
proof verification. Therefore, Coq stops the proof verification
and the proof verification for the second part of the theorem
is not performed.

Failure in the proof verification implies that a possible path
exists through which sensitive information may leak to the
output. For further insight, Fig. 21 shows the information
leakage path and the propagated signal sensitivity levels in
this design, where the output has a non-zero value.

Since the Trojan in this design modifies the transistor-level
implementation of analog blocks, using the block-level IFT
may not detect the possible information leakage unless we also
model the leaking mechanism in the Verilog-AMS description.
Therefore, to demonstrate the applicability of block-level IFT
using VeriCoq-IFT, we modified the block-level models of
the RF pulse generators described in Verilog-AMS and added
another input which modifies the output frequency according
to the transistor-level implementation. Using these models and
converting the design to Coq through VeriCoq-IFT, we observe
that the checking of the proof for the output does not pass,
which again implies possible information leakage.

3) Transmission Power Trojan: As described in Section II,
this design contains a hardware Trojan which adds an addi-
tional transistor at the output of the power amplifier in order
to slightly increase the transmission power when the value of
the leaked AES key bit is zero. Following the same procedure
as in Section VIII-A.1, we evaluated this design and obtained
a proof for the security property of the output, which does
not pass in Coq. Once again, this implies that the proposed
method detects the fact that there exists a potential for sensitive
information leakage in this design. Fig. 22 shows the signal
sensitivity levels in this design in addition to the information
leakage path.

Fig. 23. An example circuit leaking information from the analog to the digital
domain. The dashed box shows A2, which was introduced by the authors
in [15]. Numbers represent the propagated sensitivity levels.

We also repeated the experiment utilizing the Verilog-AMS
models of analog blocks. In this case, we have the design
at both block-level and transistor level, since the leaking
mechanism employs a single transistor which is separate from
our analog block models. Therefore, we have the design as a
combination of various abstraction levels: (i) transistor-level,
(ii) analog block-level, and (iii) digital gate-level and register
transfer-level. Again, checking the proof for the output does
not pass in Coq, showing possible information leakage. This
shows that our integrated methodology is capable of handling
the design at various levels of abstraction.

B. Information Leakage From Analog to Digital Domain

Sensitive information may also originate from the analog
domain, such as signals coming from a sensor. Therefore,
in this section we demonstrate a case where sensitive informa-
tion can leak from the analog domain to the digital domain,
as well as the ability of the proposed approach to detect it.

Fig. 23 shows a circuit which we created to demonstrate
this concept. Let us assume that the analog input in this
design originates from a sensitive analog biometric source,
such as an electrocardiogram signal. Peaks in this signal reflect
the heart-beat and therefore reveal the activity level or the
excitement level of a person. Evidently, such biomedical data
is considered confidential and its inadvertent disclosure can
raise privacy concerns [35]. Our example circuit borrows a
technique called A2, which was introduced by the authors
in [15] to devise an analog counter that generates a trigger
signal based on the electrical activity on a victim wire. Once
the on-off frequency on the victim wire reaches a certain
threshold, defined by the size of the capacitors and the
transistors, the output of this circuit, which is shown by a
dashed box in Fig. 23, is activated. The Schmitt trigger in the
design adds hysteresis to the trigger threshold in order to avoid
output oscillation. Instead of using this technique as a Trojan
trigger as employed by the authors in [15], we utilized it to
detect a certain level of activity on the input coming from the
electrocardiogram signal and digitize it on the “hi-act” signal.

The digital output in this design is not supposed to convey
any information about the heart rate. However, due to this
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Fig. 24. A circuit leaking the MSB from the output of ADC by manipulating
the transmission power.

stealthy circuit, and after a certain amount of time defined by
the digital counter has lapsed, the digital output switches to
signal “hi-act”, thereby passing sensitive analog information
to the digital domain. When embedded in a large design, this
illegal behavior of the digital output may not be revealed
through functional testing.

To evaluate this design using our approach, we followed
a similar procedure as in Section VIII-A.1 and converted the
design to its corresponding Coq representation, while marking
the analog input as sensitive. Verification of the proof of the
security property for the digital output in this design fails in
Coq, showing that this type of information leakage is also
successfully revealed by our IFT methodology. To provide
more insight, numbers in Fig. 23 show the propagated sen-
sitivity levels which lead to the digital output being marked
as sensitive.

In addition to IFT at the transistor-level, we also per-
formed block-level IFT by modeling the Schmitt trigger
in Verilog-AMS and converting the design to Coq using
VeriCoq-IFT. Similar to the transistor-level, the verification
of the proof for the output in this case, which is a combi-
nation of block-level, transistor-level, gate-level and register
transfer-level abstractions, does not pass in Coq, indicating
possible information leakage.

As another demonstration of information flow from analog
to digital, Fig. 24 shows a circuit which is supposed to send
encrypted values coming from the analog input and converted
to digital using an analog to digital converter (ADC). The
encryption block in this design uses the Data Encryption
Standard (DES) algorithm. However, through the addition of
one transistor, this design leaks the most significant bit (MSB)
of the ADC output using a similar leaking mechanism as the
one described in Section VIII-A.3. Assuming that the analog
input comes from a sensitive source such as ECG, this leaked
bit can reveal private and confidential information about the
user.

To evaluate this circuit using our methodology, we utilized
a Verilog-AMS model for the ADC and implemented the other
analog parts at the transistor level. Together with the digital
blocks, we developed two implementations of this design:
i) Trojan-free, and ii) Trojan infested. By evaluating the proof
of the security property for the output of these designs in Coq,
we observe that the proof for the Trojan-free design passes

while the checking fails for the Trojan-infested design. For
illustration purposes, numbers in Fig. 24 show the sensitivity
values as they propagate through the Trojan-infested design.

IX. DISCUSSION AND CONCLUSION

We introduced an integrated methodology for IFT in
analog/mixed-signal designs, which is capable of transcending
various levels of design abstraction, from the register transfer
level down to the transistor level. To the best of our knowledge,
this is the first approach supporting IFT in analog designs.
Integrated with an existing IFT method in the digital domain,
our solution can help reveal possible information leakage paths
in complex mixed-signal designs, which may exist either due
to design errors or due to malicious modifications by an
in-house adversary or an untrusted third-party IP provider.
Verification of the proofs for the most complex designs in
our experiments which include AES cores, on a Windows
7 computer with 8 GB of RAM and an Intel Core i7 processor,
completed in about 30 minutes.

Similar to most other IFT approaches, our methodology
relies on accurate labeling of sensitive signals and sensitivity
reducing operations in the design. To this end, a methodology
for computing the initial sensitivity levels of the signals
by considering a high-level trusted implementation of the
design, as well as the various considerations for annotating
sensitivity reducing operations, were discussed for the digital
domain in our earlier studies [17], [18]. A similar approach
can also be adopted for setting the initial sensitivities in
analog/mixed-signal designs. While encryption and sensitivity
reduction is not as pervasive in the analog domain, it is
still possible. Such an example of a common analog encryp-
tion approach proposed in the literature was discussed in
Section VI-C, along with a demonstration that our method-
ology can handle such operations both in the digital and in
the analog domain in Section VII.

A limitation of our approach, as mentioned in
Section VI-A, is that it cannot automatically reveal
side-channels created by varying continuous entities (e.g.,
currents or voltages) in internal nodes of the circuit.
However, our enhanced VeriCoq-IFT solution enables
designers to annotate suspicious internal signals and, thereby,
automatically generate theorems to evaluate their sensitivity
levels. As we described in Section IV, unexpected propagated
sensitive labels on such internal signals can show potential
existence of a side-channel, and requires further inspection
and/or simulation. While this solution is not completely
automated (i.e., it requires the help of annotations by the
expert designer), it does provide the means for evaluating
side-channels instigated by internal nodes.

Parasitic components can also create a path for information
leakage, as demonstrated by the authors in [36] for the case
of capacitive crosstalk. While we did not consider parasitic
components in our analysis, it is possible to extract such
parasitic components from the layout and include them in the
design in a preprocessing step based on a minimum threshold
value defined by the designer or some other criteria. However,
proper analysis of parasitic components and understanding
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of their contribution to possible information leakage requires
detailed simulations.

Lastly, VeriCoq-IFT and the PCHIP-based IFT methodology
which we introduced herein for analog/mixed-signal designs,
adopt a conservative information flow policy, which may
lead to false positives although we did not encounter such
false positives in our practical experiments. For example,
a transistor in the off-state may block the information flow,
but our current method only considers the worst possible case.
As another example, even in the presence of an information
flow, perturbations of an output due to changes in the sensitive
signal may be so minuscule, e.g., due to sizing or component
values, that they may not be realistically detectable; hence,
they can be considered a false positive in our methodology.
Once a flow is identified by our approach, mixed-signal sim-
ulations can be employed to filter out possible false positives,
requiring manual effort by the designers. While alternative and
more accurate approaches, such as GLIFT [21], RTLIFT [7],
SecVerilog [10] and its descendants [11], [12] were recently
introduced in the digital domain, they are currently restricted
to the digital domain. We envision the future development
of better IFT models for analog parts of a mixed-signal
design, which will allow integration with these approaches to
improve IFT accuracy in such designs. Pure digital models,
e.g., using Booleanization [16], can lead to improved formal
analysis-based IFT methods. On the other hand, simulation
IFT models developed in Verilog-A/AMS for analog designs
can enable integration with methods such as GLIFT and
RTLIFT and can enable mixed-signal simulations for IFT
purposes. This can lead to methodologies that take circuit
functionality, component values, as well as signal values and
amplitudes into account for IFT. We want to emphasize that
the analog domain provides the attackers a diverse means of
leaking information which might not have been utilized or
identified before. Therefore, at least some degree of conser-
vatism in defining analog information flow policies might be
beneficial.

Based on the findings of this initial study, it is evident that
further research is needed towards developing more accurate
information flow policies, commensurate with the unique char-
acteristics of analog/mixed signal designs. Additionally, our
future efforts will be directed towards developing solutions that
capture side-channels which cannot be currently automatically
detected by our framework. Finally, we intent to extend the set
of Verilog/Verilog-A/AMS constructs that can be handled by
VeriCoq-IFT, in order to expand its domain of applicability.
Overall, we anticipate that the robustness and effectiveness of
this initial IFT solution in the analog/mixed-signal domain will
inspire the hardware security community to further develop
this nascent but very important area.
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