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Abstract—As the quality expectations increase, contemporary
semiconductor manufacturing test solutions inevitably result
in a non-negligible number of good devices being discarded
which is termed as overkill. Overkill is the result of multiple
factors affecting the manufacturing test process. Some of these
factors stem from the test environment itself. During the testing
procedures, stricter test program limits are used compared with
actual product specs, resulting in overly conservative decisions
and a considerable number of good devices being discarded.
Additionally, test programs often include measurements that
are not part of the specifications but established as part of
the quality control process, for which limits are empirically
defined, resulting in non-negligible yield loss of specification-
compliant devices. Towards addressing the problem of overkill
and improving the overall effectiveness of the manufacturing
test process, in this project we propose to exploit multivariate
statistical analysis methods. We do this by post processing the
probe test measurements of the two different groups of tests –
tests that are part of the specification list (Customer Promised)
and tests with guard band limits that are not part of the
specification. We take advantage of the correlation that exists
between all the probe test measurements, irrespective of whether
the limits of these tests are stricter or lenient. Using the probe
test measurements of the set of devices which pass all the tests, we
train a regression model to predict the probe test measurements
of the devices that fail the tests that are designed for internal
quality purposes. The effectiveness of the proposed methodology
is demonstrated on an industrial dataset provided by Texas
Instruments.

Index Terms—post-silicon calibration, adaptive, test-cost re-
duction

I. INTRODUCTION

As the complexity of devices increase with current new
technologies, the testing procedures in semiconductor manu-
facturing are also complex and time consuming. These testing
procedures are always comprehensive in order to combat
the increasing process variations and exhaustive in order to
satisfy the strict quality expectations in the market. The market
expectations are higher than ever when it comes to defect
tolerance in the range of Defective Parts Per Billion (DPPB)
instead of Defective Parts Per Million (DPPM). The elaborate,
expensive and stricter testing procedures aim to remove any
of the defective chips from being shipped. During such testing
procedures, stricter test program limits (guard bands) than
the actual product specs are employed during test, resulting
in overly conservative decisions and a considerable number
of good devices being discarded. This results in yield loss
(i.e., overkill). Additionally, test programs often include test

measurements that are either listed as “typical” or are not part
of the specifications. For these tests the limits are defined at
the onset of production with limited set of device population
and never revisited again to be changed. Because of these
empirically defined limits, there is a non-negligible number
of specification-compliant devices being removed as defective
devices.

Fig. 1: Test Outcome Matrix

Figure 1 shows the overall outcome of the above mentioned
testing procedure of fabricated ICs. The two green squares
show the two masses of devices that comply with the design
specifications and those that do not comply with the spec-
ification limits. These 2 groups will truly pass and fail the
specification limits. However, as indicated by the solid red
square at the top right, a number of chips will end up being
classified as failing by the manufacturing test process because
of the guard banded limits, resulting in overkill or yield loss.
The striped red square in bottom left shows the marginally
failing chips being identified as defective or underkill. The
devices that are part of the solid red square comprising the
yield loss factor implies the possible profit or money left on
the table. Previous research shows multiple statistical solutions
that take advantage of the relationship between the multiple
test measurements of the product being used to rectify the
situation at hand. Regardless of the developed solutions, there



is still existing yield loss and test escape problems that hamper
the overall efficiency of the manufacturing industry.

Fig. 2: Distribution Matrix for CP and NCP tests

Several components contribute towards the problem of
overkill apart from the stricter test limits. Among those factors
is the numerous test measurements that are designed specifi-
cally for internal process control. These test measurements are
designed in such a way that passing them is not a requirement
from the customer side and in most cases not even known
to the customers. As mentioned earlier, in order to minimize
customer returns, test limits are often set conservatively. Fur-
thermore, the limit setting decisions are taken by considering
only a limited set of devices and hence there is a chance
of misinformed decision making. Nevertheless, chips failing
these tests are still discarded as defective. Thus we have two
sets of test measurements, one is the customer-promised tests
(CP) that are part of the product specification and known to the
customers; the other being the non-customer promised tests
(NCP) that do not make the product specification and have
empirically defined limits.

From the matrix shown in figure 2, we can see the test
outcomes with respect to the two groups of tests. Group 1
devices are the ones that pass both CP and NCP tests and hence
are considered good devices and can be shipped to customers.
Group 2 devices are the ones that fail CP tests that are part of
product specification and are discarded irrespective of passing
the NCP tests. Group 3 comprises of devices that pass CP
tests but fail one or more NCP tests and hence are discarded
as failing devices. Group 4 devices fail; both CP and NCP tests
and are discarded as defective devices. Our focus is on group 3
devices that pass the customer requested CP tests but fail one
or more NCP tests. Since NCP tests have empirically defined
limits at the onset of production, we strongly believe that there
is some yield that is left to be recovered from this space. The
goal of our work is to employ multivariate statistical models
that takes full advantage of the available information from
the testing procedure and the existing correlation between the
different groups of tests to overcome the problem of yield loss.

II. RELATED WORK

Several approaches that take advantage of the correlation be-
tween different test measurements have already been proposed

with the aim of reducing the test costs and time associated
with the complex testing procedures. Specifically, the above
mentioned concepts are derived form alternate test [6].Prior
work explored alternate test where the inter-test correlation is
leveraged to skip exhaustive testing and reduce the overall
testing costs as studied in [5] and [1].In [3] the authors
explore the embedded correlation existing in the production
test data and with the use of feature engineering, they are
able to classify multidimensional spaces where the device is
passing/failing to capture test escapes. The existing literature
on yield recovery is based in post-calibration tuning of devices
[4].

III. PROPOSED METHODOLOGY

Our methodology aims at predicting the NCP test measure-
ments in place of the actual test measurements for group 3
devices. This is because we believe that the devices failing
some of the NCP tests are mainly due to the empirically
defined limits. Hence we propose to take the group 1 devices
that pass both sets of tests and use the relationship between
CP and NCP tests in Group 2 devices to predict the NCP
test measurements of Group 3 devices. The model takes
advantage of the statistical correlation that exists between
the tests and leverages that relationship to predict the test
outcomes and thereby reducing yield loss. One of the key
components of building the model to predict the test outcome
is the implementation of the Multivariate Adaptive Regression
Splines (MARS) algorithm [2]. MARS is a powerful and
flexible regression model that helps in representing relation-
ships between a few variables in high-dimensional datasets.
It takes advantage of additive and interactive relationships
between variables, thereby resulting in using fewer variables
to represent a high-dimensional dataset.

As shown in figure 3, in the machine learning based
approach that we are proposing, there are two phases. During
the training phase, we only make use of the devices that we
trust, essentially the devices that belong to group 1. From these
devices, we extract the probe tests measurements for both CP
tests and NCP tests and train a MARS model. The MARS
model learns the underlying statistical correlation between the
CP tests and NCP tests from their probe test measurements.
Once the model has been trained, we move to the testing phase,
where we use the devices that belong to group 3 which pass all
CP tests but fail one or more NCP tests. From these devices,
we extract the probe test measurements from CP tests and pass
them through the previously trained MARS model. This model
based on its previous learning will be able to predict the test
outcome of the NCP tests by correlating the test measurements
of CP tests. Once the model predicts the test outcome for the
NCP tests of group 3 devices, we can determine if the outcome
will pass or fail the specific test limits.

The prediction results despite being good cannot be substan-
tiated or verified because we do not have any ground truth. In
order to substantiate the proposed regression-based approach,
we have come up with a clustering-based approach. This is a
step carried out using the predicted results from the regression



Fig. 3: Machine Learning Based Approach

approach. We take the predicted NCP test measurements of
group 3 devices and cluster them using the unsupervised
clustering algorithm like agglomerative hierarchical clustering
to see if there is a distinct cluster containing the devices which
have been predicted to pass and capable of being moved to
group 1 area. Unlike the previous step’s regression model,
this unsupervised method is agnostic to limits and groups the
devices only based on the probe test measurements’ unique
signature.

IV. RESULTS

In order to implement the proposed methodology, we used
an industrial dataset consisting of 92022 devices and their
probe test measurements provided by our industry partners
at Texas Instruments. The dataset consisted of probe test data
along with the test limits for 66 customer promised tests and
241 non-customer promised tests. The overall test outcome
among these tests for all devices under study is shown in
figure 4. The 9.6% of the devices in the bottom left square
are the set of devices which are to be studied to improve the
yield and recover whatever is left on the table. The 87.4% of
the devices are used in the training phase of the regression
based approach. The regression model was trained to learnt
he correlation between the CP and NCP test measurements
of the group 1 devices. During the testing phase, the 9.6%
devices and their CP test measurements were passed through
the trained model and provides the predicted results for the
group 3 NCP test measurements. It can be observed from the
predicted regression results shown in figure 5 that we were
able to recover 7953 devices out of 8840 of group 3 devices
and move them from group 3 to group 1. This is because

the 7953 devices were able to pass all the NCP tests base
don our predicted test measurements. But as we mentioned
earlier, there is no ground truth to verify if the 7953 devices
can definitely be moved to group 1.

Fig. 4: Distribution Matrix for the industrial dataset

In order to prove our results we take the predicted NCP
test measurements and pass them through the unsupervised
clustering algorithm. We employed agglomerative hierarchical
clustering algorithm to cluster the predicted test measurements.
The results of this clustering is shown in figure 6, where we
observe 2 distinct yet slightly overlapping clusters. Based on
the clustering algorithm output, we have 6446 devices in one
cluster and 2394 devices in another cluster. With both sets
of results, we can definitely see that there are 3 buckets of
devices. The first bucket or the confirmed pass bucket consists
of 6295 devices which includes devices that belong to one
cluster and overlap with the regression model’s recovered
7953 devices. The second bucket or the confirmed fail bucket



Fig. 5: Results from Regression Model based Predictions

consists of 736 devices which is an overlap between the 887
devices that have not been recovered based on regression
results and the second cluster from clustering results consisting
of 2394 devices. The remaining 1809 devices fall into the third
bucket or the gray area devices bucket for which we are unable
to concretely prove if they can be recovered back to group 1
or not.

In order to make a decision on the gray area devices, we
developed a risk metric that determines how many of the
devices that are capable of being recovered to group 1. We
came up with a euclidean distance based metric where we
calculate the euclidean distance between gray area devices and
the center of the group 1 devices cluster. The distribution of
euclidean distances between the confirmed passing , gray area
and confirmed failing devices and the group 1 devices cluster
are shown in figure 7. As we can see the gray distribution
corresponding to the gray area devices lie in between the con-
firmed passing and confirmed failing devices. This distribution
will help the engineers to decide how many of the gray area
devices are good enough to be recovered to group 1.

V. CONCLUSION

We presented a machine learning-based approach to recover
the yield loss left on the table because of the empirically
defined test limits. The presented approach takes advantage
of the correlation between the CP and NCP test measurement
groups. This is implemented by using the trusted group 1
devices and the correlation between the CP and NCP tests
in this group of devices to train the machine learning model.
In order to verify our predictions, we came up with a limits-
agnostic clustering of predicted NCP test measurements to find
out the overlap between the two steps to come up with three
different buckets of devices. For the third bucket or gray area
devices we proposed a euclidean distance based risk metric
where we determine how many of the gray area devices can
be recovered back to group 1.
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Fig. 6: Clustering of predicted NCP test measurements
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