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Abstract 

This paper shows a detailed modeling of three-link robotic finger that is actuated by nylon 

artificial muscles and a simulink model that can be used for numerical study of a robotic 

finger. The robotic hand prototype was recently demonstrated in recent publication   Wu, 

L., Jung de Andrade, M., Saharan, L.,Rome, R., Baughman, R., and Tadesse, Y., 2017, 

"Compact and Low-cost Humanoid Hand Powered by Nylon Artificial Muscles," 

Bioinspiration & Biomimetics, 12 (2)[1]. The robotic hand is a 3D printed, lightweight and 

compact hand actuated by silver-coated nylon muscles, often called Twisted and coiled 

Polymer (TCP) muscles. TCP muscles are thermal actuators that contract when they are 

heated and they are getting attention for application in robotics. The purpose of this paper 

is to demonstrate the modeling equations that were derived based on Euler –Lagrangian 

approach that is suitable for implementation in simulink model.  

 

Key Words: Robotic Finger, Artificial Muscles, Smart Materials, Modeling, Simulation 

and Experiments 

 

The Following is the modeling equations for 3-link robotic finger  

 
 

The schematic diagram of the biomimetic finger is shown in Fig. 1 consisting of 

three phalanges, which correspond to the proximal, middle and distal phalanges. We have 

used the Euler-Lagrangian approach for the dynamic modeling of the index finger to 
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determine the velocity Jacobians. The offset ‘e’ for the tendon is assumed to be a constant 

value of 4.5 mm. The modeling approach follows the one described by Spong et al. [2].   

 

Figure 1: (a) Free body diagram of the finger, (b) the prototype hand after actuation 

and (c) prototype hand before actuation. 

The following assumptions are made for the modeling of the finger dynamics: (1) 

the friction between the links is negligible, (2) tendon movement is smooth and 

experiences no jerk while passing through guides (i.e. tension is uniform throughout the 

string tendon), 3) all the springs have the same properties, and (4) the input force and 

temperature profiles of the actuator (TCP muscle) are known prior from experimental 

results. The general equation for the Euler-Lagrangian modeling is as follows: 

d

dt
(

∂K

∂qi̇̇
) − (

∂K

∂qi
) +

∂P

∂qi
= 𝜏𝑖   

(1) 

Where: K, P and 𝜏𝑖    are kinetic energy, potential energy and torque of the ith joint 

respectively. 

After a series of mathematical operations and transformations (Eq.(1)) can be 

written as:   
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∑ 𝑑𝑘𝑗𝑞̈𝑗 +

j

∑ {
∂𝑑𝑘𝑗

∂𝑞𝑖
−

1

2

∂𝑑𝑖𝑗

∂𝑞𝑘
} 𝑞̇𝑖𝑞̇𝑗 +

∂𝑃

∂𝑞𝑘
= 𝜏𝑘

i,j

 
(2) 

This equation is expanded for three links and yields the following equation set: 

𝜏1 = 𝑑11𝑞̈1 + 𝑑12𝑞̈2 + 𝑑13𝑞̈3 + 𝐶111𝑞̇1
2 + 𝐶221𝑞̇2

2 + 𝐶331𝑞̇3
2 +

(𝐶211 + 𝐶121)𝑞̇1𝑞̇2 + (𝐶311 + 𝐶131)𝑞̇3𝑞̇1 + (𝐶321 + 𝐶231)𝑞̇2𝑞̇3 + ∅1 + 𝜏𝑑1  

 

(3a) 

𝜏2 = 𝑑21𝑞̈1 + 𝑑22𝑞̈2 + 𝑑23𝑞̈3 + 𝐶112𝑞̇1
2 + 𝐶222𝑞̇2

2 + 𝐶332𝑞̇3
2 +

(𝐶212 + 𝐶122)𝑞̇1𝑞̇2 + (𝐶312 + 𝐶132)𝑞̇3𝑞̇1 + (𝐶322 + 𝐶232)𝑞̇2𝑞̇3 + ∅2 + 𝜏𝑑2  

 

(3b) 

𝜏3 = 𝑑31𝑞̈1 + 𝑑32𝑞̈2 + 𝑑33𝑞̈3 + 𝐶113𝑞̇1
2 + 𝐶223𝑞̇2

2 + 𝐶333𝑞̇3
2 +

(𝐶213 + 𝐶123)𝑞̇1𝑞̇2 + (𝐶313 + 𝐶133)𝑞̇3𝑞̇1 + (𝐶323 + 𝐶233)𝑞̇2𝑞̇3 + ∅3 + 𝜏𝑑3  

(3c) 

 

Where: τk = Torques experience by the link k, dkj =  inertia matrix,  

 q̈ = Angular acceleration, q̇ = Angular velocity, q = Angular Displacement, 
C = Coriolis Component of acceleration, P = Potential Energy including gravity 
 

 

The impoartant equation for modeling of the finger is Eq.(3) ,  the derivation of the 

Eq. (3) and Simulink® model are shown in section A1 and A2. We have ignored the terms 

in the model which do not have significant effects (very small in order, ~10-10) such as 

Coriolis terms and all the terms of inertia matrix except the diagonal terms. But in the Eq. 

(3), we have added one extra damping term i.e. 𝜏𝑑𝑖 = 𝑐𝑑 𝑞̇𝑖 (i= 1,2,3) which is proportional 

to the angular velocity of the link 𝑞̇𝑖. A similar modification of dynamic equation was 

presented by Lewis et al. [3]. Damping exists in human fingers as well as bio-mimetic 

robotic finger joints, which helps control (reduces oscillations).  
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Assuming the torque generated by the TCP actuator is distributed at each joint (𝜏1 

= MCP joint, 𝜏2 = PIP joint and 𝜏3 = DIP joint) with certain factors, the torques can be 

written as in Eq.  (4): 

𝜏3 = 𝛾𝜏 ;      𝜏2 = 𝛽𝜏;      𝜏1 = 𝛼𝜏;        𝜏 = 𝐹𝑒 (4) 

Where F is the force generated by the TCP actuator and 𝑒 is the offset distance of 

the tendon. α, β, and γ are the fractions of torque on each joint. These parameters can be 

determined based on the design and configuration of the finger. Zollo et al. [4] and 

Carrozza [5]  have used similar assumptions to determine the applied torque at each joint. 

Also, the friction in the force transmission is almost negligible for such system as described 

in one of our previous study, which is found to be around 0.14 N when compared to the 3N 

produced by TCP muscle. 

A1. Euler Lagrangian Model formulation for three links 

 The general equation for the Euler-Lagrangian modeling is as follows: 

d

dt
(

∂K

∂qi̇
) − (

∂K

∂qi
) +

∂P

∂qi
= 𝜏𝑖   

(A1) 

Where: K, P and 𝜏𝑖    are kinetic energy, potential energy and torque respectively.  

The kinetic energy (K) has two components, the linear velocity and rotational velocity 

components in terms of the joint variables 𝑞 = [𝑞1 𝑞2 𝑞3]𝑇 = [𝜃1 𝜃2 𝜃3]𝑇 and their 

derivatives. The velocity terms in terms of Jacobian matrix can be described by:    

𝑣𝑖 = 𝐽𝑣𝑖(𝑞)𝑞̇ ,         𝜔𝑖 = 𝐽𝜔𝑖(𝑞)𝑞̇ (A2) 

The velocity Jacobians provided below is derived from the geometry of the links as 

shown in Fig. 1. The Jvi are the velocity Jacobians (𝑖 = 1,2,3), which are extensions of two 

links velocity Jacobians described in [2, 6]. The  𝐽𝑣𝑖(𝑞)  is the Jacobian that correlates the 

velocity of the center of mass to the joint angular positions 𝑞̇ and 𝐽𝜔𝑖 is the angular velocity 
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Jacobian of link i relative to the inertial frame of reference. The velocity Jacobians are 

consistent with Jacobians developed by Goutam and Aw [7]. 

𝐽𝑣1 = [
−𝑙𝑐1 𝑠𝑖𝑛 𝑞1 0 0
𝑙𝑐1 𝑐𝑜𝑠 𝑞1 0 0

0 0 0

] 
(A3a) 

𝐽𝑣2 = [
−𝑙1 𝑠𝑖𝑛 𝑞1 − 𝑙𝑐2 𝑠𝑖𝑛(𝑞1 + 𝑞2) −𝑙𝑐2 𝑠𝑖𝑛(𝑞1 + 𝑞2) 0

𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙𝑐2 𝑐𝑜𝑠(𝑞1 + 𝑞2) 𝑙𝑐2 𝑐𝑜𝑠(𝑞1 + 𝑞2) 0
0 0 0

] 
(A3b) 

𝐽𝑣3 = [

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

𝑤31 𝑤32 𝑤33

] 
(A3c) 

Where: 

𝑤11 =  −𝑙1 𝑠𝑖𝑛 𝑞1 − 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2) − 𝑙𝑐3 𝑠𝑖𝑛(𝑞1 + 𝑞2 + 𝑞3) 

𝑤12 = −𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2) − 𝑙𝑐3 𝑠𝑖𝑛(𝑞1 + 𝑞2 + 𝑞3)) 

𝑤13 = −𝑙𝑐3 𝑠𝑖𝑛(𝑞1 + 𝑞2 + 𝑞3)) 

𝑤21 = 𝑙1 𝑐𝑜𝑠 𝑞1 + 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑙𝑐3 𝑐𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3) 

𝑤22 = 𝑙2 𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑙𝑐3 𝑐𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3) 

𝑤23 = 𝑙𝑐3 𝑐𝑜𝑠(𝑞1 + 𝑞2 + 𝑞3) 

𝑙𝑐𝑖  are the center of mass of each link obtained from SolidWorks.  

All other elements of  𝐽𝑣3   are 0. 

 

After analyzing the rotational motion of the links and due to the fact that all the joints are 

revolute joints, the rotational Jacobian  𝐽𝜔𝑖 are given by: 

𝐽𝜔𝑖 =
1

2
{𝐼1 [

1 0 0
0 0 0
0 0 0

] + 𝐼2 [
1 1 0
1 1 0
0 0 0

] + 𝐼3 [
1 1 1
1 1 1
1 1 1

]} (A4) 

Therefore, the kinetic energy of the linkage system is given by: 

𝐾 =
1

2
𝑚𝑖𝑣𝑖

𝑇𝑣𝑖 +
1

2
ω𝐢

𝑇𝐼ω𝑖 
(A5) 
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Where 𝑚𝑖 is the mass of each link and 𝐼  is the moment of inertia about the centroid of each 

link. Substituting Equation (A3) and Equation (A4) into Equation (A2) and using the 

generalized definition of kinetic energy (Equation A5) yields Equation (A6). A rotation 

matrix 𝑅𝑖(𝑞) that correlates each link is used to transform the inertias to the inertial frame 

of reference (The same equation as Spong et al. [2]). 

𝐾 =
1

2
𝑞̇𝑇 ∑[𝑚𝑖 𝐽𝑣𝑖(𝑞)𝑇𝐽𝑣𝑖(𝑞)

𝑛

𝑖=1

+ 𝐽𝜔𝑖(𝑞)𝑇𝑅𝑖(𝑞)𝐼𝑖𝑅𝑖(𝑞)𝑇𝐽𝜔𝑖(𝑞)]q̇     (A6) 

The total kinetic energy can be written in short form as: 

K= 
1

2
𝑞̇𝑇𝐷(𝑞)𝑞̇                (A7) 

Here, D is inertia matrix of the links (robotic fingers).  

𝐷 =  ∑[𝑚𝑖 𝐽𝑣𝑖(𝑞)𝑇𝐽𝑣𝑖(𝑞)

𝑛

𝑖=1

+ 𝐽𝜔𝑖(𝑞)𝑇𝑅𝑖(𝑞)𝐼𝑖𝑅𝑖(𝑞)𝑇𝐽𝜔𝑖(𝑞)] (A8) 

The potential energy (assuming gravity is downward in Fig. 1), 𝑃𝑔 due to gravity for the 

robotic finger is as follows: 

𝑃𝑔 = 𝑃1 + 𝑃2 + 𝑃3 (A9) 

Where: 

𝑃1 = 𝑚1𝑔𝑙𝑐1 𝑠𝑖𝑛 𝑞1 

𝑃2 = 𝑚2𝑔(𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙𝑐2 𝑠𝑖𝑛(𝑞1 + 𝑞2)) 

𝑃3 = 𝑚3𝑔(𝑙1 𝑠𝑖𝑛 𝑞1 + 𝑙2 𝑠𝑖𝑛(𝑞1 + 𝑞2) + 𝑙𝑐3 𝑠𝑖𝑛(𝑞1 + 𝑞2 + 𝑞3)) 

In our robotic hands, torsional springs are used for the return motion. The elastic potential 

energy 𝑃𝑒 due to the springs 𝑘𝑡𝑖 (𝑖 = 1,2,3) can be written as: 

𝑃𝑒 =
1

2
(𝑘𝑡1𝑞1

2 + 𝑘𝑡2𝑞2
2 + 𝑘𝑡3𝑞3

2) 
(A10) 

Hence the total potential energy 𝑃 becomes: 
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𝑃 = (𝑚1𝑙𝑐1 + 𝑚2𝑙1 + 𝑚3𝑙1)𝑔 𝑠𝑖𝑛 𝑞1 + (𝑚2𝑙𝑐2 + 𝑚3𝑙2)𝑔 𝑠𝑖𝑛(𝑞1 + 𝑞2) +

𝑚3𝑔𝑙𝑐3 𝑠𝑖𝑛(𝑞1 + 𝑞2 + 𝑞3) +  
1

2
(𝑘𝑡1𝑞1

2 + 𝑘𝑡2𝑞2
2 + 𝑘𝑡3𝑞3

2) 

 

(A11) 

Therefore, the potential energy derivatives are:   

∅1 =
∂P

∂q1
                 ∅2 =

∂P

∂q2
       ∅3 =

∂P

∂q3
 (A12) 

Taking the respective partial derivatives (Equation (A6)) with respect to ‘q’ and time‘t’, 

also using potential energy derivatives into the Euler-Lagrange Equation (Equation (A1)) 

and rearranging yields:   

∑ 𝑑𝑘𝑗𝑞̈𝑗 +

j

∑ {
∂𝑑𝑘𝑗

∂𝑞𝑖
−

1

2

∂𝑑𝑖𝑗

∂𝑞𝑘
} 𝑞̇𝑖𝑞̇𝑗 +

∂𝑃

∂𝑞𝑘
= 𝜏𝑘

i,j

 
(A13) 

The coefficients of the centrifugal and Coriolis components (𝒒̇𝑖𝒒̇𝑗) are also known as 

Christoffel coefficients [2] given as: 

𝐶𝑖𝑗𝑘 = {
∂𝑑𝑘𝑗

∂𝑞𝑖
−

1

2

∂𝑑𝑖𝑗

∂𝑞𝑘
}      (A14) 

where i, j and k ϵ (1, 2, 3). 

Equation (A13) is the same as Spong et al. [2], Equation 6.55. This equation is expanded 

for three links and yields the following equation set: 

𝜏1 = 𝑑11𝑞̈1 + 𝑑12𝑞̈2 + 𝑑13𝑞̈3 + 𝐶111𝑞̇1
2 + 𝐶221𝑞̇2

2 + 𝐶331𝑞̇3
2 + (𝐶211 + 𝐶121)𝑞̇1𝑞̇2 +

(𝐶311 + 𝐶131)𝑞̇3𝑞̇1 + (𝐶321 + 𝐶231)𝑞̇2𝑞̇3 + ∅1 + 𝜏𝑑1  

(A15a) 

𝜏2 = 𝑑21𝑞̈1 + 𝑑22𝑞̈2 + 𝑑23𝑞̈3 + 𝐶112𝑞̇1
2 + 𝐶222𝑞̇2

2 + 𝐶332𝑞̇3
2 + (𝐶212 + 𝐶122)𝑞̇1𝑞̇2 +

(𝐶312 + 𝐶132)𝑞̇3𝑞̇1 + (𝐶322 + 𝐶232)𝑞̇2𝑞̇3 + ∅2 + 𝜏𝑑2  

(A15b) 

𝜏3 = 𝑑31𝑞̈1 + 𝑑32𝑞̈2 + 𝑑33𝑞̈3 + 𝐶113𝑞̇1
2 + 𝐶223𝑞̇2

2 + 𝐶333𝑞̇3
2 + (𝐶213 + 𝐶123)𝑞̇1𝑞̇2 +

(𝐶313 + 𝐶133)𝑞̇3𝑞̇1 + (𝐶323 + 𝐶233)𝑞̇2𝑞̇3 + ∅3 + 𝜏𝑑3  

(A15c) 
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But in the Equation (A15), we have added one extra damping term i.e. 𝜏𝑑𝑖 = 𝑐𝑑 𝑞̇𝑖 (i= 1,2,3) 

which is proportional to the angular velocity of the link 𝑞̇𝑖. A similar modification of 

dynamic equation was presented by Lewis et al. [3].  

The inertia matrix D was generated by the application of series of mathematical 

operations using Equation (A8). We used MATLAB symbolic tool to solve the coefficients 

of the inertia matrix and checked manually as well. 

𝐷 =  [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

] 

(A16) 

Where: 

𝑑11 = m1lc1
2 + m2{l1

2 + lc2
2 + 2l1lc2 cos q2} + m3{l1

2 +  l2
2 + lc3

2 + 2l1l2 cos q2 +

2l2lc3 cos q3 + lc3 cos(q2 + q3)} + I1 + I2 + I3  

(A17) 

𝑑12 = 𝑑21 = m2(𝑙𝑐2
2 + 𝑙1𝑙𝑐2 cos q2) + m3{𝑙2

2 +  𝑙𝑐3
2 + 2𝑙2𝑙𝑐3 cos q3 +

 𝑙1𝑙2 cos q2 + l1lc3 cos(q2 + q3)} + I2 + I3  

𝑑13 = 𝑑31 = m3{𝑙𝑐3
2 + 𝑙1𝑙𝑐3 cos(q2 + q3) + 𝑙2𝑙𝑐3 cos q3} + I3  

𝑑23 = 𝑑32 = m3(𝑙𝑐3
2 + 𝑙2𝑙𝑐3 cos q3) + I3 

𝑑22 = m3(𝑙2
2 + 𝑙𝑐3

2 + 2𝑙2𝑙𝑐3 cos q3) + 𝑚2𝑙𝑐2
2 + I2 + I3 

𝑑33 = m3𝑙𝑐3
2 + I3 

Once the inertial matrix is found, the Christoffel coefficients (𝐶111, 𝐶222, … 𝐶333), are 

obtained using Equation (A14) and the results are summarized as :  

𝐶112 = 𝑚2ℎ1 + 𝑚3(ℎ2 + ℎ4) 

𝐶113 = 𝑚3(ℎ2 + ℎ3) 

𝐶123 = 𝐶213 = 𝐶223 = 𝑚3ℎ3 

𝐶121 = 𝐶211 = 𝐶221 = −𝑚2ℎ1 − 𝑚3(ℎ2 + ℎ4) 
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𝐶232 = 𝐶322 = 𝐶332 = 𝐶132 = 𝐶312 = −𝑚3ℎ3 

𝐶131 = 𝐶311 = 𝐶231 = 𝐶321 = 𝐶331 = −𝑚3(ℎ2 + ℎ3) 

𝐶111 =  𝐶222 = 𝐶122 = 𝐶212 = 𝐶133 = 𝐶313 = 𝐶233 = 𝐶323 = 𝐶333 = 0 

 

(A18) 

 

Where: 

ℎ1 = 𝑙1𝑙𝑐2 𝑠𝑖𝑛 𝑞2;      ℎ3 = 𝑙2𝑙𝑐3 𝑠𝑖𝑛 𝑞3 ;     ℎ2 = 𝑙1𝑙𝑐3 𝑠𝑖𝑛(𝑞2 + 𝑞3) ;    ℎ4 = 𝑙1𝑙2 𝑠𝑖𝑛 𝑞2 

 

Where the dij are components of the inertia matrix (matrix D) and 𝐶𝑖𝑗𝑘 are the coefficients 

of the centrifugal and Coriolis components (𝑞̇𝑖𝑞̇𝑗). 𝑞𝑖 is the angular displacement (the same 

𝜃𝑖  as defined in Fig. 1), 𝑞̇𝑖 is the angular velocity, 𝑞̈𝑖 is the angular acceleration, ∅𝑖 is the 

partial derivative of potential energy with respect to joint 𝑞𝑖, 𝜏𝑑𝑖 = 𝑐𝑑 𝑞̇𝑖 (i = 1, 2, 3) is a 

damping torque and 𝜏𝑖 is the torque at a joint. Similar equations were derived by Li et al. 

[8] for calculating the moments of the joints of three fingers in order to determine the effect 

of the extrinsic and intrinsic muscles on the movement of the finger. Joint friction and 

structural damping can be considered in the dynamic equation, as shown in ref. [9]. 

Damping is an integral part of the human [10, 11] as well as bio-mimetic robotic finger 

joints [12, 13], which helps control and complete dexterous movements. Therefore, as 

stated earlier, we have considered the effect of damping factor in Equation A15 by adding 

terms 𝜏𝑑𝑖. 

A2. Simulink Model for the Finger Joint 

Based on the equations shown in the previous section, a simulink model was created 

(Fig.2). It consists of three main blocks corresponding to the three links, Link 1, Link 2 

and Link 3. The input for each block is the torque shown in the left side of the figure 2.  

Outputs from the simulations are shown in red color.  Since the equations are coupled, 

signal routings were used to simplify the diagram.  There are multiple sub-blocks that are 
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included in the diagram, and all the details can be seen in Fig.2.  Since three link robotic 

fingers are common, such detailed simulation diagram/equations and tools will be useful 

to study dynamic motion of fingers that are actuated by different means.  

 

Figure 2: Block diagram of the Simulink model used to model the nylon muscle. 
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