The Current Situation

What's Happening?
- Effectiveness of AV solutions not what it used to be
- Some are calling for dissolution of AV industry (Source)
- Lots of botnets

Why?
- Signature checking just greps for patterns
- Weak against obfuscation
 - Packing
 - Code polymorphism
 - Junk bytes
Example of AV Weakness
- Whitepaper published by SANS institute examined efficacy of AV apps in detecting Metasploit payloads.
- Obfuscation on payload that was detected by 14 out of 32 AV engines led to its detection by only 4 out of 32 engines.
- This was only on the Windows platform. Linux AV tools failed 100% of the time.

Description of Data Structure Approach
Some Properties
- All programs use data structures
- These data structures are abstractions of implementation details
- The data structures used tend to be very similar between programmers

Approach:
- We can try to look for general compound data structures.

Laika Overview
Key Challenges
- Identify position and size of objects
 - Use potential pointers in image to estimate object positions and sizes
- Determine which objects are similar
 - Convert objects from sequences of raw bytes into sequences of semantically valued blocks
 - "Probably pointer blocks", "probably string blocks", etc
 - Cluster objects with similar sequences of blocks using Bayesian unsupervised learning

Empirical Approach
- Built a virus checker on top of Laika
- Check against conventional scanners
- Results
 - Laika has 99% accuracy
 - ClamAV has 85% accuracy
Classification

- Input is a set of unknown objects
- Identifies distinguishing features (feature selection problem)
- Train a classifier
- Make inferences about the class of each object
- Output is set of objects with tagged classes

Types of Classification - Data Tagging

- Supervised Learning
 - Inference engine is trained on labeled data with a set of given classes. Easier, more effective, simpler to validate. Labeled data not always possible.
- Unsupervised Learning
 - Inference engine is given data set and asked to generate a set of classes. Engine finds number of distinct classes and tags items accordingly

Types of Classification - Underlying Learning Method

- Generative - Learning machine attempts to learn an underlying probability distribution. This is helpful because probabilistic methods such as expectation maximization (or its Bayesian counterpart maximum a posteriori) become available to use.
- Discriminative - Learning machine attempts to learn the best way to determine class boundaries. This is often more specialized and data efficient at the cost of flexibility.

Feature Selection

- Nature of the Problem
 - Feature selection is the most important part of designing any classifier
 - Often independent of classification method
 - Especially hard for this problem, as objects from same class will still often have completely different byte values

- Block Types
 - Convert each machine word into a block type
 - Basic types:
 - Address
 - Zero
 - Char
 - Data

- Atom Types
 - Classes are represented as vector of atoms
 - Atoms are a collection of blocks, so we need to identify atoms from block streams
 - Basic atom types:
 - Pointer
 - Zero
 - String
 - Integer
 - Looks like there's some relation between atom and block types...
 - A block type is an atomic type with some error. This can be observed by examining $P(\text{blocktype}|\text{atomictype})$
Finding Data Structures

Basic Process
- Scan through memory and identify pointers
- Tentatively estimate the start position of objects using locations from pointers
- Find the end position using estimation done during clustering
- The rest of the block past the end of the object is classified as random noise
- Introduce a random atomic type to handle this noise

Bayesian Model

- The ith machine word of memory image \(M \) is notated \(M_i \).
- The kth atomic type of class \(j \) is \(\omega_{jk} \).
- \(X \) is the input list, with \(X_i \) indicating the position ith object in \(X \).
- We want to maximize the most likely objects and classes given a memory image. An equation for this can be obtained with the following steps:
 - Bayesian approach means MAP. We can get this from Bayes’ rule as \(P(\omega|X) = \frac{P(X|\omega)P(\omega)}{P(X)} \).
 - Plugging in the values specific to this problem we get \(P(\omega|X|M) \propto \delta(X,\omega) \prod_{l} P(M_{l}|\omega,X) \prod_{j} \prod_{k} P(\omega_{jk}) \).
- Applying the chain rule to the class and object joint distribution, we obtain \(P(\omega|X|M) \propto \delta(X,\omega) \prod_{l} P(M_{l}|\omega,X) \prod_{j} \prod_{k} P(\omega_{jk}) \).
- Finally, adding in the model fitness factor yields \(P(\omega|X|M) \propto \delta(X,\omega) \prod_{l} P(M_{l}|\omega,X) \prod_{j} \prod_{k} P(\omega_{jk}) \).

Concluding Remarks

- Plugining the values specific to this problem we get

Bayesian Model

- Our normalizing constant \(P(M) \) can be dropped as we only care about the likelihood, not the probability
- We assume independence both between and within classes
- This lets us calculate the prior distribution easily as \(P(\omega) = \prod_l \prod_j \prod_k P(\omega_{jk}) \).
- \(P(X|\omega) \) represents the probability of locations and sizes of the list of objects based on our class model. The term is 0 for illegal solutions and 1 otherwise. \(P(M|\omega,X) \) represents the model’s fitness for the data. This can be calculated as \(P(M|\omega,X) = \prod_l P(M_l|\omega,X) \).
- The previous method of calculating the likelihood equation makes a Naive Bayes assumption; it assumes data is conditionally independent to other data.

Bayesian Model - Putting It All Together

- As stated, the probability being sought is \(P(\omega,X|M) \propto P(M_{l}|\omega,X)P(X|\omega)P(\omega) \).
- Substituting the prior distribution yields \(P(M_{l}|\omega,X)P(X|\omega)P(\omega) \).
- Taking the function \(\delta: X \times \omega \rightarrow \{0,1\} \) returning 0 for illegal solutions and 1 otherwise, adding in the list suitability factor yields \(\delta(X,\omega)P(M_{l}|\omega,X)P(\omega) \).
- Finally, adding in the model fitness factor yields \(P(\omega,X|M) \propto \delta(X,\omega) \prod_l P(M_{l}|\omega,X) \prod_j \prod_k P(\omega_{jk}) \).

Bayesian Model - Final Equation

Maximize:
\[P(\omega,X|M) \propto \delta(X,\omega) \prod_l P(M_l|\omega,X) \prod_j \prod_k P(\omega_{jk}) \]

Intuition

- First term does sanity checking
- Second term penalizes Laika for putting an object into an unlikely class and makes sure the solution reflects the particular memory image
- Third term encourages simple solutions by penalizing approaches with many classes
More Optimizations

Typed Pointers
- Simple pointer/integer classifications produce reasonable results, but we can further optimize by introducing typed pointers.
- If all instances of class have a pointer at the same offset, it's likely that the targets of those pointers share a class.
- Good for small classes and objects with no pointers.
- Increases computational complexity. Breaks our previous independence assumptions.
- Will cause small errors to propagate.

Dynamically-Sized Arrays
Not all classes have feature vectors of the same size. We will allow objects to wrap around modulo the size of a class. This means an object can be classified as a contiguous set of instantiations of a given class - an array.

Implementation

Code Details
- Done in Lisp
- Unsupervised learning is difficult
- Use approximation scheme based on computing $P(\omega|X,M)$ incrementally.
- Uses typed pointers as a guiding heuristic.

Empirical Method
- Used Gentoo Linux to build applications and libraries with minimal optimizations, debugging symbols.
- Wrote a wrapper for malloc to track allocations and evaluate Laika's ability to identify them.

Results

Data Structure Detection
- Mostly correct.
- Some difficulties:
 - Heap is extremely noisy.
 - Only 30% of objects contained a pointer, remaining 70% classified by objects pointing to them.
 - Poor software practices such as tail accumulator array in X Window data structure. Solution? Send X Window developers a dirty sock.
- Percentage of success was around 65% without malloc info, around 0.78 with malloc info.

Program Classification
- Agobot - 99.4% (83% ClamAV)
- Kraken - 99.8% (85% ClamAV)
- Storm - 99.9% (100% ClamAV)

Outline

- Motivations
- Introduction
- Laika Details
- Conclusion

- Technical Challenges
- Evaluation

- Concluding Remarks
Outline

1. Digging for Data Structures
 - Motivations
 - Introduction
 - Laika Details
 - Conclusion

2. Polymorphic Software with DSLR
 - Introduction
 - Technical Challenges
 - Evaluation

3. Concluding Remarks

How Can We Beat Laika?

- Polymorphic Data Structures
 - Randomize data structure layout
 - Done during compilation
 - Can evade Laika-style detection
 - Can also help foil rootkit attacks

A Few Things about Randomization...

- Examples where it doesn’t work
 - Not as helpful in network communication because other parties are involved
 - Public definitions cannot be randomized
 - Tail accumulator arrays rely on the zero-length array to be at the end of the data structure
 - Programmers may use direct data offsets to access some fields
 - When data structure order is used during value initialization

More about Data Structures

- They are ubiquitous
 - Network protocol reverse engineering (guided fuzzing)
 - Buffer overflow attacks
 - Kernel rootkits require knowledge of OS data structures
 - Attack signatures (Laika)
A Few Things about Randomization...

Similar issues
- Monoculture leads to large-scale reproductive attacks
- We should aim to embrace randomization
- Similar solutions:
 - Address space randomization
 - Instruction set randomization
 - Data randomization
- In a similar spirit, let's examine data structure layout randomization (DSLR)

Outline
1. Digging for Data Structures
 - Motivations
 - Introduction
 - Laika Details
 - Conclusion
2. Polymorphic Software with DSLR
 - Introduction
 - Technical Challenges
 - Evaluation
3. Concluding Remarks

Implementation with gcc
Possible places to do randomization
- Abstract Syntax Tree (AST)
- GIMPLE (representation with at most three operands)
- Static single assignment (SSA) tree representation
- Register-transfer language (RTL) tree

Reasons for choosing AST
- AST retains a lot of program source code information
- AST is easier to understand and more convenient to modify
- AST occurs before gcc has determined layout of data structures, so we can reorder data structure members without computing specific memory addresses.

Randomizable Data Structures
Mitigation steps
- Data structures are randomizable if and only if it is not exposed to external programs or does not violate gcc syntax or programmer intention
- We ask the programmer to indicate when a data structure is randomizable

A Simple Approach
Reorder Data Structure Layout
- Pretty straightforward
- Given n structures each with m fields, this gives $(m)!^n$ program combinations.
- Is it actually that simple?

Identical Layouts
- This occurs when reordering the data structure produces an isomorphic data structure
- Example: a data structure containing `int` followed by `int` is not changed by reordering
- Solution? Insert junk data into the data structure

Which Data Structures to Randomize
Our choices
- `struct`
- `class`
- Function stack variables
A few new keywords are introduced:

- `__obfuscate__` - This lets gcc know that a data structure may be randomized. It is followed by some specific options.
- `__reorder__` - This tells gcc to reorder the elements in a structure.
- `__garbage__` - This tells gcc to insert garbage into the data structure.

We need to be able to ensure randomization consistency across a single project build

- Stores a random value (either from project build file or from the glibc function random then stored) and a count of the number of randomized fields.
- Reordering is done with a recursive Knuth shuffle
- Padding selects fields from sizes in the set 1, 2, 4, 8.
Empirical Analyses

Effectiveness

- Apply to goodware and malware
- Goodware includes programs such as openssh
- Malware includes programs from offensive computing and VX Heavens
- Achieves a code difference between 3 and 17%.

Rootkit Defense

- Used DSLR to randomize the task_struct data structure in the version 2.6.8 Linux kernel
- Prevented 4 out of 6 rootkits tested

Evaluation against Laika

- One small problem: Laika's released version only works on Windows binaries, DSLR uses gcc
- Had to manually execute the randomization methods
- Tried 3 Windows programs: agobot, 7-zip, and notepad
- Laika could not process notepad, so proceeded with only the other two
- Worked well with agobot (used previously to demonstrate Laika)
- 7-zip was not quite as effective. Possible reasons include that 7-zip has lots of unrandomizable structures and that high library code usage. However, data structure analysis might not be a great idea when library usage is so high

Performance Overhead

- Caused mainly by random value lookup, field count, and field reordering
- On average, only around 2% performance overhead to gcc
- Some applications were actually faster, possibly due to data locality improvements

Limitations and Future Work

- Does not support other languages such as Java, as it uses gcc at a language specific AST level.
- Randomizability of a data structure cannot be determined automatically
- Could use some other techniques such as struct and class splitting

Outline

1. Digging for Data Structures
 - Motivations
 - Introduction
 - Laika Details
 - Conclusion
2. Polymorphic Software with DSLR
 - Introduction
 - Technical Challenges
 - Evaluation
3. Concluding Remarks

Concluding Remarks

Any questions?
References

Digging for data structures.
Proceedings of the 8th USENIX conference on Operating
systems design and implementation

[2] Lin, Zhiqiang and Riley, Ryan D. and Xu, Dongyan
Polymorphing Software by Randomizing Data Structure
Layout.
Proceedings of the 6th International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment.