Overview

Course Goals
Course Style

Course Content
- System and Software Security Foundations
- Vulnerability Analysis and Exploit Generation
- System Defense
- Reverse Engineering

Course Project

Course Policy

Homework
Course Goals

The **general goal** is to understand the state-of-the-art

Offense/Attack
- Find memory vulnerability
- Develop exploits
- Create malware

Defense/Protection
- Find vulnerability
- Stop exploits
- Analyze malware
- Ensure availability

Offense/Attack

Mission
Break the system to gain resources with respect to **confidentiality** (something you are not supposed to access) and **integrity** (something you are not supposed to modify)

Techniques
- Find memory vulnerability
 - Memory vulnerability
 - Buffer overflow, integer overflow, and format string
 - Logic vulnerability or new web vulnerability (SQL injection)
- Develop exploits
 - Memory exploits, shell code, ROP, heapspray
- Create malware (Obfuscation/Packing)
 - Packing (encryption)
 - Translation, virtualization

Defense/Protection

Mission
Protect information and system resources with respect to **confidentiality**, **integrity**, and **availability** (defending such as Denial of service attack)

Techniques
- Find vulnerability (Penetration Testing)
- Stop exploits
 - Architecture, hardware
 - Operating System, Loader, Linker
 - Compiler
- Analyze malware (Reverse Engineering)
 - Unpacking (decryption)
 - De-transformation, De-virtualization
- Ensure availability, preventing DoS

Outline

1. Overview
 - Course Goals
 - Course Style
2. Course Content
 - System and Software Security Foundations
 - Vulnerability Analysis and Exploit Generation
 - System Defense
 - Reverse Engineering
3. Course Project
4. Course Policy
5. Homework
This course is taught in both a seminar and a regular-course style. Each student will be expected to:

- **Read** one of the most recent papers given by the instructor thoroughly.
- **Present** the key techniques in the paper within 12 minutes, with additional 3 minutes question.
- **Attend** all the lectures.
- **Scribe** one lecture (write notes).
- **Perform**
 - An individual research project, or as
 - A team for an engineering project (5K LOC), with 3 members.

Outline

1. **Overview**
 - Course Goals
 - Course Style
2. **Course Content**
 - System and Software Security Foundations
 - Vulnerability Analysis and Exploit Generation
 - System Defense
 - Reverse Engineering
3. **Course Project**
4. **Course Policy**
5. **Homework**

Understanding OS Kernels

Topics

- **Process Management**
 - Creation/Running/Exit
 - Process address space
 - Context switch
- **Virtual Memory**
 - Paging
- **File System and Disk Data Management**
 - EXT2/EXT3, NTFS
 - Proc

Topics

- **Process Management**
 - Creation/Running/Exit
 - Process address space
 - Context switch
- **Virtual Memory**
 - Paging
- **File System and Disk Data Management**
 - EXT2/EXT3, NTFS
 - Proc
Exploits

Topics
- Shell Code
- Code Injection
- Return-into-libc
- Reliable Shell Code
 - HeapSpray (ASLR)
 - Return-oriented programming

Outline

1. Overview
 - Course Goals
 - Course Style

2. Course Content
 - System and Software Security Foundations
 - Vulnerability Analysis and Exploit Generation
 - System Defense
 - Reverse Engineering

3. Course Project

4. Course Policy

5. Homework

Architecture, OS Perspective

Topics
- Address Space Randomization (ASR), DEP, NX-bit
- Instruction Set Randomization (ISR)
- Data Randomization (DR)
- Operating System Interface Randomization, RandSys
- N-Variant System, Reverse Stack Execution
- System Call Interposition
- Library Extension (Libsafe/LibsafePlus/LibsafeXP)
- Virtual Machine Introspection

Compilation Extension, Code Transformation, Runtime Verification

Topics
- Bounds Checking, Type Checking
- Diehard (heap protection), exTerminator
- Binary Rewriting, SFI/XFI/CFI/DFI
- Program Shepherding
- Sandboxing, NativeClient
- Taint Checking, Blocking Bad Input
Course Goals
- System and Software Security Foundations
- Vulnerability Analysis and Exploit Generation
- System Defense
- Reverse Engineering

Course Style
- Compilation Extension
- Code Transformation
- Runtime Verification

Course Project
- Implement a dynamic binary code analysis plug-in, using a most recent PIN, with a data flow analysis (taint analysis at byte level) capability
- Roughly code size 3K LOC

Sample Projects
- Vulnerability analysis
- Penetration testing
- Reverse engineering
Outline

Overview
- Course Goals
- Course Style

Course Content
- System and Software Security Foundations
- Vulnerability Analysis and Exploit Generation
- System Defense
- Reverse Engineering

Course Project

Course Policy

Homework

Grading Policy
- 20% In-Class Presentations
- 10% Class participation
- 20% Scribe a lecture (write a note)
- 50% Class Project
- Exceptional work will be rewarded appropriately

Prerequisites

System Skill Set
Solid programming/development skills (Assembly, C, C++, Unix). "Operating System", "Compilers", and "Computer Security", are the least prerequisites for this class. I am training "academic hackers"

UTD
- CS 3340 Computer Architecture
- CS 3376 C/C++ Programming in a UNIX Environment
- CS 4348 Operating Systems Concepts
- CS 4393 Computer and Network Security
- CS 4394 Implementation of Modern Operating Systems

Leave vs. Stay

char code[] = "\xb0\x01\x31\xdb\xcd\x80";

08048080 <_start>:
08048080: b0 01 mov $0x1,%al
08048082: 31 db xor %ebx,%ebx
08048084: cd 80 int $0x80

char code[] = "\x31\xc0\xb0\x46\x31\xdb\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x6e\x2f\x73\x68\x58\x41\x41\x41\x41\x42\x42\x42\x42";
Overview Course Content Course Project Course Policy Homework

Other Policy

Late Policy
No late submission

Collaboration Policy
Encouraged, but limit the team member to at most three students.

Cheating Policy
Strictly follow the university policy on cheating and plagiarism

Outline

1. **Overview**
 - Course Goals
 - Course Style

2. **Course Content**
 - System and Software Security Foundations
 - Vulnerability Analysis and Exploit Generation
 - System Defense
 - Reverse Engineering

3. **Course Project**

4. **Course Policy**

5. **Homework**

Homework-0: Due next Monday

Paper Presentation Sign-Up
Selecting the paper (date implicitly selected) to present

Scribe Sign-Up
Selecting the date for to-be-scribed lecture Two students are allowed to scribe the same lecture if there is no slot

Engineering Project
- Forming your team with at most 3 members
- Starting to get familiar with PIN

Research Project
- Decide the research project
- Talk to the instructor