Cognitive Science (B.S.)

Cognitive science is the study of complex information processing in humans and machines and includes the multidisciplinary study of biological and artificial systems. The field of cognitive science draws from diverse approaches to understanding these processes, including research from experimental psychology, neuroscience, linguistics, computer science, mathematics, and engineering. Cognitive scientists believe that the design of artificially intelligent computer systems can benefit from a better understanding of human psychology and neuroscience. Likewise, our understanding of human thought and behavior can benefit from the latest advances in work on artificially intelligent systems.

The Cognitive Science major prepares students for further study in graduate school leading to professional careers in academic and industrial settings. When coupled with advanced training in math and computer science, the degree prepares the student for the application of computer simulations of neural networks to problems such as pattern recognition and decision making in industry.

Bachelor of Science in Cognitive Science Degree Requirements (120 hours)

I. Core Curriculum Requirements¹: 42 hours

A. Communication (6 hours)
 3 hours Communication (RHET 1302)
 3 hours Communication Elective (CGS 3340 or PSY 3393)²

B. Social and Behavioral Sciences (15 hours)
 6 hours Government (GOVT 2305 and 2306)
 6 hours History (HST 1301 and 2301)
 3 hours Social and Behavioral Science Elective (PSY 2301)²

C. Humanities and Fine Arts (6 hours)
 3 hours Fine Arts (AP 1301)
 3 hours Humanities (A&H 1301)

D. Mathematics and Quantitative Reasoning (6 hours)
 6 hours Calculus (MATH 2417 and 2419)³

E. Science (9 hours)
 3 hours Science (NSC 4361)²
 6 hours Science Electives (including at least one course with a substantial laboratory component)

¹ Curriculum Requirements can be fulfilled by other approved courses from accredited institutions of higher education. The courses listed in parentheses are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at U.T. Dallas.

II. Major Requirements: 44 hours

Major Preparatory Courses (13 hours beyond Core Curriculum)
- CGS 2401 Cognitive Science
- CS 1315 Computer Science I
- MATH 2417 Calculus I³
- MATH 2419 Calculus II³
- MATH 2418 Linear Algebra
- PSY 2301 Introduction to Psychology²

Major Core Courses (16 hours beyond Core Curriculum)
- CGS 3325 Historical Perspectives: Mind and Machines Since 1600
- CGS 3340 Empirical Methods in Cognitive Science² or PSY 3393 Experimental Projects²
CGS 3342 Quantitative Models in Cognition
CGS 3361 Cognitive Psychology
CGS 4310 Computational Models of Knowledge Structures or CS 4365 Artificial Intelligence
NSC 4361 Behavioral Neuroscience
PSY 3490 Honors Quantitative Methods

Major Related Courses (15 hours)
Students are encouraged to take one or more of the following special electives:
- CGS 4390 Special Topics in Cognitive Science
- CGS 4394 Internship in Cognitive Science
- CGS 4397 Honors Thesis
- CGS 4V98 Research in Cognitive Science
- CGS 4V99 Independent Student in Cognitive Science

Students majoring in Cognitive Science must complete 12 additional hours in Cognitive Science and related areas chosen from the following designated electives. The areas serve as examples of possible concentrations, and the student should construct an individualized degree plan in consultation with an advisor. At least 9 semester credit hours should be chosen in one of the areas designated below or in an area approved by a Cognitive Science faculty advisor.

Neuroscience
- NSC 4352 Cellular Neuroscience
- NSC 4353 Neuroscience Laboratory Methods
- NSC 4354 Integrative Neuroscience
- NSC 4355 Advanced Neuroscience Laboratory
- NSC 4363 Neuropharmacology
- NSC 4366 Neuroanatomy
- NSC 4367 Developmental Neurobiology
- NSC 4368 Computational Neuroscience

Psychology
- PSY 3362 Cognitive Development
- PSY 4336 Psychology of Language
- PSY 4357 Brain and Memory
- PSY 4360 Learning
- PSY 4362 Perception
- PSY 4364 Attention and Memory
- PSY 4374 Judgment and Decision Making

Mathematics
Students electing this option should choose MATH 2418 to fulfill program prerequisites and must also have taken MATH 2421 Multivariable Calculus with Applications. MATH 2420 Differential Equations is highly recommended but not required. Students in this area should take:
- MATH 3303 Introduction to Mathematical Modeling
- STAT 4351 Probability

and at least one of the following:
- STAT 4352 Mathematical Statistics
- STAT 4382 Stochastic Processes

Economics
Students electing this option should take ECON 2301 and ECON 2302. Students in this option must take:
- ECON 3310 Intermediate Microeconomic Theory
- ECON 3311 Intermediate Macroeconomic Theory

and at least one of the following:
- ECON 3370 The Global Economy
ECON 4320 Public Sector Economics
ECON 4345 Industrial Organization
ECON 4351 Mathematical Economics
ECON 4355 Econometrics
ECON 4362 Developmental Economics

Language and Speech
LIT 3330 Linguistics
SPAU 3303 Normal Language Development
SPAU 3304 Communication Sciences
SPAU 3343 Phonetics
SPAU 3344 Anatomy and Physiology of Speech and Hearing
SPAU 3345 Neural Basis of Communication

Electrical Engineering
Students electing this option should choose MATH 2418 to fulfill program prerequisites and must also have taken MATH 2421 Multivariable Calculus with Applications and MATH 2420 Differential Equations. Students in this option should take:
EE 3301 Electrical Network Analysis
EE 3302 Signals and Systems
and at least one of the following:
EE 4350 Communication Systems
EE 4361 Digital Signal Processing
ENGS 4310 Systems and Controls

Computer Science
Students electing this option should choose MATH 2418 to fulfill program prerequisites and must also have taken CS 2315 Computer Science II. Students electing this option must choose CS 4365 Artificial Intelligence as a core requirement, as well as the following electives:
CS 2305 Discrete Math I
CS 3305 Discrete Math II
and at least one of the following:
CS 3345 Data Structures and Algorithms
CS 4384 Automata Theory

2 A required Major course that also fulfills a Core Curriculum requirement. Hours are counted in Core Curriculum.
3 Six hours of Calculus are counted to fulfill the Mathematics Core Requirement.

III. Elective Requirements: 34 hours

- **Advanced Electives (6 hours)**
- **Breadth Electives:** 6 hours of upper-division courses, or lower-division courses that have prerequisites, that are outside of Cognitive Science.
- **Free Electives (28 hours)**
 Students are encouraged to explore areas of concentration in Cognitive Science as well as explore interests outside the field. Be aware that at least 51 hours of upper division credit hours are required for graduation.

Minor in Cognitive Science

Students who are not majoring in Cognitive Science may minor in Cognitive Science by taking 18 semester credit hours selected from the lists of major core courses and major related courses. At least 12 hours must be upper-division courses, of which at least 9 hours must be Cognitive Science courses.
Fast Track Baccalaureate/Master's Degrees

U.T. Dallas undergraduate students with strong academic records who intend to pursue a master's degree in Applied Cognition and Neuroscience at UTD may consider an accelerated undergraduate-graduate plan of study. When accepted into the program, students may take up to 12 hours of graduate courses that may be used to complete the bachelor's degree and also to satisfy requirements for the Master's degree. Students must maintain a 3.0 grade point average and earn grades of B or better in the graduate courses taken. The Fast Track makes it possible for students to complete upper-division undergraduate education and graduate training in three years. For admission to the Fast Track program, students must apply and be admitted to the graduate program in Applied Cognition and Neuroscience. Students should consult with a graduate advisor regarding admissions criteria and plans of study.

Specified Course Descriptions

A&H 1301 (HUMA 1301) Exploration of the Humanities (3 semester hours) An introduction to the concept of cultural tradition through the study of selected works of literature, philosophy, music, and visual art. Emphasis on the relations among various forms of cultural expression and developing students' ability to interpret complex artistic works in their historical, cultural, and intellectual contexts. General education core course. (3-0) S

AP 1301 (ARTS 1301) Exploration of the Arts (3 semester hours) This course introduces students to the physical and intellectual demands required of the author, the performer, and the visual artist. This introduction includes, but is not limited to, the student's production of a creative project as well as written assessments of art and performance. (3-0) Y

CGS 2401 Cognitive Science (4 semester hours) An introduction to the study of the brain and behavior from the point of view of cognitive science, including approaches from psychology, philosophy, neuropsychology, and computational modeling. Includes phenomena involving sensory systems, memory, decision making, language, and communication. Laboratory. Satisfies the Core Curriculum Social and Behavioral Science requirement. (3-3) Y

CGS 3325 Historical Perspectives on Psychology: Mind and Machines since 1600 (3 semester hours) Basic frames of reference in 20th-century psychology and their historical development in Western thought since 1600 with an emphasis on issues involved with minds, brains, and machines. Includes behaviorism, learning theory, artificial intelligence, gestalt, structural and cognitive approaches. (Offered in the spring semester.) Prerequisite: PSY 2301 or CGS 2401. (Same as PSY 3360.) (3-0) Y

CGS 3340 Empirical Methods in Cognitive Science (3 semester hours) Laboratory experience in designing and conducting empirical investigations in cognitive science, with a major emphasis on writing research reports. (This course fulfills the advanced writing requirement for Cognitive Science majors and 3 hours of the Communication component of the Core Curriculum). Prerequisite: PSY 3490. (3-0) R

CGS 3342 Quantitative Models in Cognition (3 semester hours) Quantitative approaches to description and theory of phenomena in human cognition, including perception, memory, and thought. Prerequisite: CGS 2401. (3-0) T

CGS 3361 Cognitive Psychology (3 semester hours) Theory and research on perception, learning, thinking, psycholinguistics, and memory. (Offered in the spring semester.) Prerequisite: PSY 2301 or CGS 2401. (Same as PSY 3361.) (3-0) Y

CGS 4310 Computational Models of Information Processing Systems (3 semester hours) Computer and engineering science perspectives on the simulation of intelligent systems. Applications in natural language, sensory systems, and robotics. Prerequisite: CGS 2401 or MATH 2418. (3-0) T

CGS 4394 Internship (3 semester hours) Students earn course credit for field experience in an applied setting. Requires working at least 8 hours per week at an approved community agency or business of the student's choice. Students keep daily job diaries, attend one class meeting per month, and write brief papers relevant to their experiences. Open to all students who have reached junior or senior standing (more than 53 hours). Apply for placements in the College Master's office. Must be taken on Credit/No Credit basis. (Same as PSY 4394, NSC 4394 and SPAU 4393.) (3-0) S

CGS 4397 Honors Thesis (3 semester hours) An independent study course in which the student writes an honors thesis under faculty supervision. (3-0) S

CGS 4V90 Special Topics in Cognitive Science (1-6 semester hours) May be repeated for credit (9 hours maximum). (3-0) R
CGS 4V98 Research in Cognitive Science (1-6 semester hours) The student conducts a research project under faculty supervision and writes a paper. (1-6-0) S

CGS 4V99 Independent Study in Cognitive Science (1-6 semester hours) Assist faculty with research projects or study advanced topics under weekly faculty direction. Must be taken on a Credit-No Credit basis. (1-6-0) S

CS 1315 (COSC 1315) Computer Science I (3 semester hours) Computer programming in a high-level, block structured language. Algorithmic thinking and the history and utility of machines which automate it. Basic data types and variables, memory usage, control structures (sequential, selection, repetition), functions and parameter passing, recursion, console and file input/output. Prerequisite: Basic computer literacy/programming skills (see CS 1115 description) or concurrent enrollment in CS 1115. (3-0) S

CS 2305 (MATH 2305) Discrete Mathematics for Computing I (3 semester hours) Principles of counting. Boolean operations. Propositional calculus. Sets, relations, functions, strings, languages, partial orders, and lattices. Prerequisite: MATH 1326 or MATH 2419 or consent of the instructor. (3-0) S

CS 2315 (COSC 2315) Computer Science II (3 semester hours) Advanced programming techniques, including an introduction to object-oriented programming. Classes, inheritance, dynamic function binding, strings, stacks, queues, lists, and trees. Dynamic memory allocation/management. Prerequisite: CS 1315. (3-0) S

CS 3305 Discrete Mathematics for Computing II (3 semester hours) Topics in enumeration; principle of inclusion and exclusion. Algorithmic complexity; recurrence relations. Graph theory. Prerequisite: CS 2305. (3-0) S

CS 3345 Algorithm Analysis and Data Structures (3 semester hours) Metrics for performance evaluation of algorithms. Formal treatment of basic data structures such as arrays, stacks, queues, lists, trees. Various sorting and searching techniques. Fundamental graph algorithms. Prerequisites: CS 2315 and CS 3305. (3-0) S

CS 4365 Artificial Intelligence (3 semester hours) Basic concepts and techniques that enable computers to perform intelligent tasks. Examples are taken from areas such as natural language understanding, computer vision, machine learning, search strategies and control, logic, and theorem proving. Prerequisites: CS 2315 and CS 3345. (3-0) Y

CS 4384 Automata Theory (3 semester hours) A review of the abstract notions encountered in machine computation. Topics include finite automata, regular expressions, PDAs, and context-free languages. Prerequisite: CS 3305. (3-0) S

ECO 2301 (ECON 2301) Principles of Macroeconomics (3 semester hours) An introduction to theories of the determination of national production and income, interest rates, inflation, and unemployment. Other topics include the banking system, the balance of payments, economic growth and development. (3-0) S

ECO 2302 (ECON 2302) Principles of Microeconomics (3 semester hours) An introduction to theories of the behavior of markets. Topics include the theory of demand and supply, market structure, resource markets, international interdependence in commodity markets, the role of government policy and regulation. (3-0) S

ECO 3310 Intermediate Microeconomic Theory (3 semester hours) The study of theories of demand, production, competition, markets, and welfare. Implications of theory for purposes of public policy prescriptions are given particular emphasis. Prerequisite: ECO 2302 or permission of instructor. (3-0) S

ECO 3311 Intermediate Macroeconomic Theory (3 semester hours) A study of the determinants of national income, employment, interest rates, and the price level, including theories and evidence regarding the influence of monetary and fiscal policies on the economy. Prerequisites: ECO 2302 and ECO 2301 or permission of instructor. (3-0) S

ECO 3370 The Global Economy (3 semester hours) Considers the changing relationships of population, resources, and the economy, the transformation of classical spatial economies, and the processes producing increasing globalization. Particular attention is paid to technological change and to the dynamics of world trade and investment. This course is also recommended for students who are not economics majors. (Same as GEOG 3370.) (3-0) T

ECO 4320 Public Sector Economics (3 semester hours) A study of the economics of the public sector, including taxation, public expenditures, and fiscal policy. Examines the theoretical foundation for government intervention in the economy, and the incentive effects of government policies on work, investment, and the spending of income. (Same as PA 4313.) Prerequisite: ECO 3310. (3-0) R

ECO 4345 Industrial Organization (3 semester hours) Market structure, firm conduct, and social performance of industries with emphasis on firms' strategic behavior in price and nonprice competition. Topics include oligopoly pricing, strategic entry deterrence, location strategies, product differentiation, advertising, research and development, and the effect of firms' conduct on economic welfare and market structure. Prerequisite: ECO 3310. (3-0) T
ECO 4351 Mathematical Economics (3 semester hours) Mathematical formulation of economic theories such as static and dynamic analysis of market behavior and macroeconomic models. Introduction to optimization techniques and linear algebra. Prerequisite: ECO 3304. (3-0) Y

ECO 4355 Econometrics (3 semester hours) The application of statistical methods to economic analysis; particular attention is given to regression analysis and hypothesis testing. Prerequisite: ECO 3304. (3-0) Y

ECO 4362 Development Economics (3 semester hours) A study of development and economic growth, with a principal focus on less-developed countries. Includes theories and patterns of development, the role of human resources, capital resources, agriculture, and international markets. Prerequisites: ECO 2302 and ECO 3311. (3-0) Y

EE 3301 Electrical Network Analysis (3 semester hours) Analysis and design of RC, RL, and RLC electrical networks. Sinusoidal steady state analysis of passive networks using phasor representation; mesh and nodal analyses. Introduction to the concept of impulse response and frequency analysis using the Laplace transform. Prerequisites: EE 2305, MATH 2420. Corequisite: EE 3201. (3-0) S

EE 4350 Communications Systems (3 semester hours) Fundamentals of communications systems. Review of probability theory and Fourier transforms. Filtering and noise. Modulation and demodulation techniques, including amplitude, phase, pulse code, pulse position, and pulse width modulation concepts. Time division multiplexing. Prerequisites: EE 3302, EE 4300. (3-0) S

EE 4361 Introduction to Digital Signal Processing (3 semester hours) An introduction to the analysis and design of discrete linear systems, and to the processing of digital signals. Topics include time and frequency domain approaches to discrete signals and systems, the Discrete Fourier Transform and its computation, and the design of digital filters. Prerequisites: EE 3302, EE 4300. (3-0) T

GOVT 2305 (GOVT 2305) Constitutional Foundations and Political Behavior in the U.S. and Texas (3 semester hours) This course examines the evolution and current state of political behavior and public policy making in the U.S. and Texas. Topics discussed will include the constitutions, federalism, intergovernmental relations, voting, elections, political parties, public opinion, and interest groups. (Fulfills one-half of the legislative requirement of 6 hours of American government.) (3-0) S

GOVT 2306 (GOVT 2306) Political Institutions in the U.S. and Texas (3 semester hours) This course explores the primary institutions of U.S. and Texas government. It examines the bureaucracy as well as the executive, legislative, and judicial branches of government at the state and federal level. (Fulfills one-half of the legislative requirement of 6 hours of American government.) (3-0) S

HST 1301 Themes and Ideas in American History (3 semester hours) An introduction to the methods of historical inquiry through the study of selected main themes in American history. A course designed to offer students an understanding of the historical and cultural context of America in the contemporary world. Fulfills one-half of the Texas legislative requirement for six hours in American history. (3-0) S

HST 2301 Issues in American History (3 semester hours) Readings, commentary, and discussion aimed at varying aspects of history and culture. Fulfills one-half of the Texas legislative requirement for six hours in American history. (3-0) Y

LIT 3330 Linguistics (3 semester hours) The nature of language; general survey of the contributions of linguistics to the fields of phonetics, phonemics, morphology, lexicology, syntax, and semantics. Other topics of general interest in the field will be covered, such as language change, dialects, writing systems and their history, use and misuse of language, and the language of media, advertising, and politics. (3-0) Y
MATH 2417 (MATH 2417) Calculus I (4 semester hours) Functions, limits, continuity, differentiation; integration of function of one variable; logarithmic, exponential, and inverse trigonometric functions; techniques of integration, and applications. Three lecture hours and two discussion hours a week. Prerequisite: MATH 2312 or equivalent. (4-0) S
MATH 2418 Linear Algebra (4 semester hours) Systems of linear equations, determinants, vectors and vector spaces, linear transformations, eigenvalues and eigenvectors, quadratic forms. Three lecture hours and two discussion hours per week. Credit given for only one of MATH 2333 or 2418. Prerequisite: MATH 2419 or consent of instructor. (4-0) S
MATH 2419 Calculus II (MATH 2419) (4 semester hours) Continuation of MATH 2417. Improper integrals, sequences, infinite series, power series, parametric equations and polar coordinates, vectors, vector-valued functions, functions of several variables, partial derivatives and applications, multiple integration. Three lecture hours and two discussion hours a week. Prerequisite: MATH 2417. (4-0) S
MATH 2420 (MATH 2420) Differential Equations with Applications (4 semester hours) Topics covered will be drawn from the following list: First order differential equations, ordinary differential equations, system of linear differential equations, stability, series solutions, special functions, Sturm-Liouville problem, Laplace transforms and linear differential equations, numerical solutions and applications in physical sciences and engineering using computers. Three lecture hours and two discussion hours per week. Prerequisite: MATH 2419. (4-0) S
MATH 2421 Multivariable Calculus with Applications (4 semester hours) Vectors, matrices, vector functions, partial derivatives, divergence, curl, Laplacian, multiple integrals, line and surface integrals, Green's, Stoke's, and Gauss's theorems, and applications in physical sciences and engineering. Three lecture hours and two discussion hours per week. Prerequisite: MATH 2419. (4-0) S
MATH 3303 Introduction to Mathematical Modeling (3 semester hours) An introduction to construction, use, and analysis of empirical and analytical mathematical models. Emphasis on using appropriate technology with tools such as curve fitting, probability and simulation, difference and differential equations, and dimensional analysis. Cannot be used to satisfy mathematics requirements by students in Mathematical Sciences and cannot be used to satisfy the advanced mathematics electives sequence by non-majors. Prerequisites: MATH 2419 and 2418. (3-0) Y
NSC 4352 Cellular Neuroscience (3 semester hours) This course focuses on the cell biology and cellular physiology of the neuron. Growth and maintenance of dendrites, axons and synapses, and the underlying processes of macromolecule synthesis, packaging, and transporting are the central biological issues. Electrical signaling, ion channel functions, and synaptic transmission are the main physiological issues. Pre- or corequisite: BIO 2301 or NSC 4361. (Same as PSY 4352.) (3-0) Y
NSC 4353 Neuroscience Laboratory Methods (3 semester hours) This laboratory course provides hands-on experience with the use of electrophysiological techniques for the analysis of living neural preparations. Pre- or corequisite: NSC 4361 or BIO 2301. (This course fulfills the advanced writing requirement for Neuroscience majors and 3 hours of the Communication component of the Core Curriculum). (0-6) Y
NSC 4354 Integrative Neuroscience (3 semester hours) Examines the collective behavior of neuronal systems with respect to sensory processing, motor control, and the plasticity regulating more advanced behavioral, motivational, and cognitive functions. Prerequisite: NSC 4361 (Same as PSY 4354.) (3-0) Y
NSC 4355 Advanced Neuroscience Laboratory (3 semester hours) This laboratory course exposes students to a structured research project, with topics selected from the range of neuroscience faculty interests. It requires students to develop the rationale for experiments and to interpret their results. Each student writes a publication-style paper with reference to the scientific literature. Prerequisite: NSC 4353. (0-6) Y
NSC 4361 Behavioral Neuroscience (3 semester hours) Explores the nature of the brain processes underlying behavior, including consideration of basic neurophysiology and the physiology of sensation, learning, and emotion. Satisfies 3 hours of the Core Curriculum Science (non-lab) requirement. (3-0) S
NSC 4363 Neuropharmacology (3 semester hours) A survey of neurotransmitter functions with special emphasis on effects in the central nervous system. Emphasis is on receptor theory and neurochemistry, but neurotransmitter metabolism and release are also considered. Correlations between neurotransmitter activity and behavior and pathological states are discussed where appropriate. Prerequisite: NSC 4352 or NSC 4354. (Same as PSY 4363.) (3-0) Y
NSC 4366 Neuroanatomy (3 semester hours) Introduction to the anatomical organization and basic functional principles of the major sensory, motor, associational, and modulatory systems of the human brain. Students learn to identify visually specific structures on slides, magnetic resonance images (MRI), and dissected brain specimens in relation to neural
pathways and system interconnections. This course provides a basis for a general understanding of the human brain and its functions in relation to disease and behavior. Prerequisite: NSC 4361 or BIO 2301. (Same as PSY 4366.) (3-0) Y

NSC 4367 Developmental Neurobiology (3 semester hours) Examines the processes guiding the proliferation, differentiation and migration of neurons as they form transient or long-lasting connections and circuits. Prerequisite: NSC 4352 or NSC 4354. (Same as PSY 4367.) (3-0) Y

NSC 4368 Computational Neuroscience (3 semester hours) Introduction to state-of-the-art computer methods for simulation of biologically realistic neuronal dynamics. Students must demonstrate some degree of computer skills. (3-0) R

PSY 2301 (PSYC 2301) Introduction to Psychology (3 semester hours) Overviews the major theories and scientific research examining the human mind and behavior. The topics range from studies of perception, cognition, memory, language, and thought to studies of development, personality, relationships, motivation, abnormal patterns of thought and behavior, and cultural differences. Satisfies the Core Curriculum Social and Behavioral Science requirement. (3-0) S

PSY 3362 Cognitive Development (3 semester hours) A contrast of Piagetian, behaviorist, and information-processing approaches to the development of cognitive processes throughout the life span. Pre- or corequisite: PSY 4334. (3-0) Y

PSY 3393 Experimental Projects (3 semester hours) Laboratory and field experience in designing and conducting psychological research, with a major emphasis on the writing of research reports. (This course fulfills the advanced writing requirement for Psychology majors and 3 hours of the Communication component of the Core Curriculum.) Prerequisite: PSY 3392 or PSY 3490. (3-0) S

PSY 3490 Honors Quantitative Methods (4 semester hours) An honors-level survey of methods of conducting research in psychology. Presents measurement techniques, basic research designs, and statistical analyses developed in terms of the general linear model. Draws upon examples primarily from cognitive and social psychology to illustrate methods in behavioral research. (Offered in the fall semester.) Prerequisite: PSY 2317. (4-0) Y

PSY 4336 Psychology of Language (3 semester hours) Psychological processes in the use of language, with consideration of language structure and acquisition. (3-0) T

PSY 4357 Brain and Memory (3 semester hours) Current research and theory on modifications in the central nervous system that may underlie memory. Includes an overview of synaptic physiology and pharmacology, and development of the concept of neural plasticity from foundations in anatomy and physiology on the basis of electrical stimulation and pharmacological evidence. Includes discussion of applications such as amnesia. Pre- or corequisite: NSC 4361. (Same as NSC 4357) (3-0) T

PSY 4360 Learning (3 semester hours) The theoretical basis of learning is presented with emphasis on results from animal research. Introduces the student to the scientific analysis of behavior and the application of experiments in the development of a psychology of learning. Includes classical and instrumental conditioning, non-associative learning, and behavior modification. Prerequisite: PSY 2301. (3-0) Y

PSY 4362 Perception (3 semester hours) Considers the processes by which the individual gathers information from the external world, the physiological basis of those processes, and how they develop throughout the life span of the individual. Pre- or corequisite: NSC 4361. (3-0) Y

PSY 4364 Attention and Memory (3 semester hours) Factors influencing the capacity to pick up, organize, and remember complex information. Prerequisite: PSY 3361, or consent of instructor. (3-0) T

PSY 4374 Judgment and Decision Making (3 semester hours) Processes of human judgment will be examined from the perspective of cognitive, computer-based, and social psychological theories of inference. Focus is on specific domains of judgment, such as attitude formation and change, biases and prejudices, decision making in organizations, and marketing strategies to illustrate basic principles of decision making. Pre- or corequisite: PSY 3361. (3-0) Y

RHET 1302 (ENGL 1302) Rhetoric (3 semester hours) The course presents an integrated approach to writing, reading, and critical thinking by developing the grammatical, logical, and rhetorical skills necessary for university writing. All classes work in a computerized learning environment. Students are taught basic computer literacy and submit all work electronically and on paper. (3-0) S

SPAU 3303 Normal Language Development (3 semester hours) The development of communication, including phonology, syntax, semantics, and pragmatics, with emphasis on theories of language acquisition. (3-0) Y

SPAU 3304 Communication Sciences (3 semester hours) Fundamentals of acoustics for speech and hearing, basic auditory phenomena, and the acoustic properties of speech. (3-0) Y
SPAU 3343 Phonetics (3 semester hours) The study of speech sounds. Phonetic transcription and description of articulatory, acoustic, and linguistic properties of speech. (3-0) Y

SPAU 3344 Anatomy and Physiology of Speech and Hearing (3 semester hours) Study of anatomic and physiologic mechanisms underlying speech respiration; phonation; articulation. Overview of the peripheral auditory system. (3-0) Y

SPAU 3345 Neural Basis of Communication (3 semester hours) Cortical and subcortical mechanisms underlying sensory, motor, and cognitive aspects of communication. (3-0) Y

STAT 4351 Probability (3 semester hours) Probability models, random variables, expectation, special distributions, and the central limit theorem. The theory is illustrated by numerous examples. Prerequisite: MATH 2421. (3-0) T

STAT 4352 Mathematical Statistics (3 semester hours) Theory and methods of statistical inference. Sampling, estimation, hypothesis testing, analysis of variance, and regression with examples from the physical, social, and management sciences. Prerequisite: STAT 4351 or equivalent. (3-0) T

STAT 4382 Stochastic Processes (3 semester hours) Stochastic models including Markov chains, random walks, Poisson processes, renewal processes, and an introduction to time series and forecasting. Prerequisite: STAT 4351 or equivalent. (3-0) T