October 1, 2007
Midterm Exam I
EE 3302: Signals and Systems

NOTE: Please, complete the following table and keep record of your assignment number.

<table>
<thead>
<tr>
<th>First Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Name</td>
<td></td>
</tr>
<tr>
<td>Student ID</td>
<td>0</td>
</tr>
<tr>
<td>Assignment #</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 1. Consider the continuous-time signal

\[x(t) = -2u(6t + 3) \]

where \(u(t) \) is the causal unit step function.

A) Sketch and label carefully \(x(t) \) [pt. 10].

Exercise 2. Consider the signal

\[x(t) = -2u(t + 2) + 2u(t - 2) \]

where \(u(t) \) is the causal unit step function.

A) Derive the energy and the time-averaged power of signal \(x(t) \) over \(-\infty < t < \infty\) [pt. 10].

Exercise 3. A continuous-time LTI system has impulse response

\[h(t) = u(t) \sin(t) \]

where \(u(t) \) is the causal unit step function.

A) Determine whether or not the system is [pt. 10]:

- memoryless,
- causal,
- stable.

Exercise 4. Consider the LTI system with the following input \((x)\) output \((y)\) relation

\[y(t) = x(t + 2) + \int_{t-1}^{t} x(\tau) \, d\tau \]

A) Derive, sketch and label the impulse response of the system, and determine whether or not the system is causal [pt. 15].
Exercise 5. Consider the discrete-time LTI system with impulse response

\[h[n] = \begin{cases}
1 & n = -1 \\
1 & n = 1 \\
0 & \text{otherwise}
\end{cases} \]

The signal at the system input is

\[x[n] = \begin{cases}
1 & n = -1 \\
1 & n = 0 \\
1 & n = 1 \\
0 & \text{otherwise}
\end{cases} \]

A) Derive the expression of the signal at the output of the system. Sketch the output signal [pt. 20].

Exercise 6. Consider a continuous-time LTI system. The unit impulse response of the system is

\[h(t) = u(t) - u(t - 1) \]

where \(u(t) \) is the causal unit step function. The signal at the system input is

\[x(t) = \delta(t + 2) + u(t) - u(t - 1) \]

where \(\delta(t) \) is the unit impulse function.

A) Derive the output signal of the LTI system analytically, i.e., \(y(t) \). Sketch and label carefully \(y(t) \) [pt. 20].