Exercise 1. A system is described by the following differential equation

\[\frac{d^2 y(t)}{dt^2} + 7 \frac{dy(t)}{dt} + 10 y(t) = \frac{d^2 x(t)}{dt^2} + 8 \frac{dx(t)}{dt} + 15 x(t) \]

where \(x(t) \) is the input signal, and \(y(t) \) is the output signal. Assume that the initial rest condition is satisfied.

A) Determine the frequency response of the system [pt. 10].
B) Determine the unit impulse response of the system [pt. 10].
C) Determine the frequency response of the inverse system [pt. 5].
D) Determine the unit impulse response of the inverse system [pt. 10].

Exercise 2. Consider the continuous-time signal

\[x(t) = \frac{\sin(5t)}{5t} \]

Let \(y(t) = x^2(t) \). The following signals are sampled using a train of impulses with periodicity \(T \), \(\sum_{k=-\infty}^{+\infty} \delta(t - kT) \): signal \(x(t) \) is sampled to obtain \(x_\epsilon(t) \), and signal \(y(t) \) is sampled to obtain \(y_\epsilon(t) \).

A) Determine the range of values for \(T \) that allows complete recovery of \(x(t) \) from \(x_\epsilon(t) \) [pt. 10].
B) Determine the range of values for \(T \) that allows complete recovery of \(y(t) \) from \(y_\epsilon(t) \) [pt. 10].

Exercise 3. Consider the two discrete-time sequences

\[x_1[n] = \left(\frac{1}{2} \right)^n u[n-1] \quad \text{and} \quad x_2[n] = \left(\frac{1}{3} \right)^n u[n+1] \]

where \(u[n] \) is the causal unit step function. A third signal is obtained using the convolution sum, e.g., \(x[n] = x_1[n] \ast x_2[n] \).

A) Compute the z-transform of \(x_1[n] \) [pt. 10].
B) Compute the z-transform of \(x_2[n] \) [pt. 10].
C) Compute the z-transform of \(x[n] \) [pt. 10].
D) Derive, sketch and label carefully \(x[n] \) [pt. 15].
Exercise 4. The algebraic part of the \(z \)-transform of a discrete-time signal \(x[n] \) is

\[
X(z) = -\frac{z^{-1}}{(1 - 5jz^{-1})^2}
\]

The region of convergence (RoC) is not explicitly given, but it is known that point \(z_1 = 1 + j \) belongs to the RoC.

A) Determine the RoC of \(X(z) \) from the information available [pt. 10].

B) Derive \(x[n] \) using the RoC found in A) [pt. 15].

C) Does the Fourier transform of \(x[n] \) converge? [pt. 5].

Exercise 5. Consider a discrete-time LTI system with unit impulse response \(h[n] = \delta[n - 1] - \delta[n - 2] \), where \(\delta[n] \) is the unit impulse function. Let \(x[n] \) and \(y[n] \) be the input and output signal, respectively. Let the \(z \)-transform of \(x[n] \) be

\[
X(z) = \frac{z}{(z^2 - \frac{5}{3}z + \frac{2}{3})}, \quad |z| > 1
\]

A) Derive the \(z \)-transform of \(y[n] \) [pt. 15].

B) Derive, sketch and label carefully \(y[n] \) [pt. 15].