$$S_1: \text{causal LTI,}$$
$$w[n] = \frac{1}{2} w[n - 1] + x[n];$$

$$S_2: \text{causal LTI,}$$
$$y[n] = \alpha y[n - 1] + \beta w[n].$$

The difference equation relating $x[n]$ and $y[n]$ is:

$$y[n] = -\frac{1}{8} y[n - 2] + \frac{3}{4} y[n - 1] + x[n].$$

(a) Determine α and β.
(b) Show the impulse response of the cascade connection of S_1 and S_2.

2.20. Evaluate the following integrals:
(a) $\int_{-\infty}^{\infty} u_0(t) \cos(t) \, dt$
(b) $\int_{0}^{5} \sin(2\pi t) \delta(t + 3) \, dt$
(c) $\int_{-5}^{5} u_1(1 - \tau) \cos(2\pi \tau) \, d\tau$

BASIC PROBLEMS

2.21. Compute the convolution $y[n] = x[n] * h[n]$ of the following pairs of signals:

(a) $x[n] = \alpha^n u[n], \quad h[n] = \beta^n u[n], \quad \alpha \neq \beta$
(b) $x[n] = h[n] = \alpha^n u[n]$
(c) $x[n] = (-\frac{1}{2})^n u[n - 4], \quad h[n] = 4^n u[2 - n]$
(d) $x[n]$ and $h[n]$ are as in Figure P2.21.

![Figure P2.21](image)

2.22. For each of the following pairs of waveforms, use the convolution integral to find the response $y(t)$ of the LTI system with impulse response $h(t)$ to the input $x(t)$. Sketch your results.

(a) $x(t) = e^{-\alpha t} u(t), \quad h(t) = e^{-\beta t} u(t)$ (Do this both when $\alpha \neq \beta$ and when $\alpha = \beta$.)
(b) \(x(t) = u(t) - 2u(t - 2) + u(t - 5) \)
\(h(t) = e^{2t}u(1 - t) \)
(c) \(x(t) \) and \(h(t) \) are as in Figure P2.22(a).
(d) \(x(t) \) and \(h(t) \) are as in Figure P2.22(b).
(e) \(x(t) \) and \(h(t) \) are as in Figure P2.22(c).

![Graphs](image)

Figure P2.22

2.23. Let \(h(t) \) be the triangular pulse shown in Figure P2.23(a), and let \(x(t) \) be the impulse train depicted in Figure P2.23(b). That is,

\[
x(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT).
\]

Determine and sketch \(y(t) = x(t) * h(t) \) for the following values of \(T \):
(a) \(T = 4 \)
(b) \(T = 2 \)
(c) \(T = 3/2 \)
(d) \(T = 1 \)
2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Figure P2.24(a). The impulse response $h_2[n]$ is

$$h_2[n] = u[n] - u[n - 2],$$

and the overall impulse response is as shown in Figure P2.24(b).

(a) Find the impulse response $h_1[n]$.
(b) Find the response of the overall system to the input

$$x[n] = \delta[n] - \delta[n - 1].$$
2.25. Let the signal

\[y[n] = x[n] \ast h[n], \]

where

\[x[n] = 3^n u[-n - 1] + \left(\frac{1}{3} \right)^n u[n] \]

and

\[h[n] = \left(\frac{1}{4} \right)^n u[n + 3]. \]

(a) Determine \(y[n] \) without utilizing the distributive property of convolution.
(b) Determine \(y[n] \) utilizing the distributive property of convolution.

2.26. Consider the evaluation of

\[y[n] = x_1[n] \ast x_2[n] \ast x_3[n], \]

where \(x_1[n] = (0.5)^n u[n] \), \(x_2[n] = u[n + 3] \), and \(x_3[n] = \delta[n] - \delta[n - 1] \).
(a) Evaluate the convolution \(x_1[n] \ast x_2[n] \).
(b) Convolve the result of part (a) with \(x_3[n] \) in order to evaluate \(y[n] \).
(c) Evaluate the convolution \(x_2[n] \ast x_3[n] \).
(d) Convolve the result of part (c) with \(x_1[n] \) in order to evaluate \(y[n] \).

2.27. We define the area under a continuous-time signal \(v(t) \) as

\[A_v = \int_{-\infty}^{+\infty} v(t) \, dt. \]

Show that if \(y(t) = x(t) \ast h(t) \), then

\[A_y = A_x A_h. \]

2.28. The following are the impulse responses of discrete-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
(a) \(h[n] = \left(\frac{1}{3} \right)^n u[n] \)
(b) \(h[n] = (0.8)^n u[n + 2] \)
(c) \(h[n] = \left(\frac{1}{2} \right)^n u[-n] \)
(d) \(h[n] = (5)^n u[3 - n] \)
(e) \(h[n] = (-\frac{1}{2})^n u[n] + (1.01)^n u[n - 1] \)
(f) \(h[n] = (-\frac{1}{2})^n u[n] + (1.01)^n u[1 - n] \)
(g) \(h[n] = n(\frac{1}{2})^n u[n - 1] \)

2.29. The following are the impulse responses of continuous-time LTI systems. Determine whether each system is causal and/or stable. Justify your answers.
(a) \(h(t) = e^{-4t} u(t - 2) \)
(b) \(h(t) = e^{-6t} u(3 - t) \)
(c) \(h(t) = e^{-2t} u(t + 50) \)
(d) \(h(t) = e^{2t} u(-1 - t) \)