Problem Solving Session III

ENGR 3302: Signals and Systems

NOTE: Please, complete the following table and keep record of your assignment number.

<table>
<thead>
<tr>
<th>First Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Name</td>
<td></td>
</tr>
<tr>
<td>Student ID</td>
<td></td>
</tr>
<tr>
<td>Assignment #</td>
<td>0</td>
</tr>
</tbody>
</table>

Exercise 1. A continuous-time LTI system has impulse response

\[h(t) = u(-t) e^t \]

where \(u(t) \) is the casual unit step function.

A) Determine whether or not the system is [pt. 10]:
- memoryless,
- causal,
- stable.

Exercise 2. A continuous-time LTI system has impulse response

\[h(t) = \begin{cases}
-e^t & 2 < t < 100 \\
0 & \text{otherwise}
\end{cases} \]

A) Determine whether or not the system is [pt. 10]:
- memoryless,
- causal,
- stable.

Exercise 3. A discrete-time LTI system has impulse response

\[h[n] = \cos \left(\frac{n\pi}{4} \right) \]

A) Determine whether or not the system is [pt. 10]:
- memoryless,
- causal,
- stable.

Exercise 4. A continuous-time LTI system has impulse response

\[h(t) = u(t) \sin(t) \]

where \(u(t) \) is the casual unit step function.
A) Determine whether or not the system is [pt. 10]:
 • memoryless,
 • causal,
 • stable.

Exercise 5. Consider the continuous-time LTI system with the following input \((x) \) output \((y) \) relation
\[
y(t) = \int_{-\infty}^{t-2} 5 \cdot x(t + 1) \, dt
\]
A) Derive, sketch, and label the impulse response of the system, i.e., \(h(t) \), and determine whether or not the system is causal [pt. 15].

Exercise 6. Consider the continuous-time LTI system with the following input \((x) \) output \((y) \) relation
\[
y(t) = \int_{t-4}^{\infty} 3 \cdot x(\tau) \, d\tau - x(t-1)
\]
A) Derive, sketch and label the impulse response of the system, i.e., \(h(t) \), and determine whether or not the system is stable [pt. 15].

Exercise 7. Consider the discrete-time LTI system with the following input \((x) \) output \((y) \) relation
\[
y[n] = x[n - 2] + \sum_{k=n}^{n+1} x[k]
\]
A) Derive, sketch and label the impulse response of the system, i.e., \(h[n] \), and determine whether or not the system is stable [pt. 15].

Exercise 8. Consider the LTI system with the following input \((x) \) output \((y) \) relation
\[
y[t] = x(t + 2) + \int_{t-1}^{t} x(\tau) \, d\tau
\]
A) Derive, sketch and label the impulse response of the system, and determine whether or not the system is causal [pt. 15].