Exercise 1. Consider the open network of queues shown in Figure 1. It consists of three M/M/1 queues.

![Figure 1: Open queueing network.](image)

Customers enter the network at rate λ immediately reaching queue 1. Customers leaving queue 1 will choose queue 2 with probability p, and queue 3 with probability $(1-p)$. All customers leaving queue 2 return to queue 1. All customers leaving queue 3 leave the network forever. The service times at the queues are independent and exponentially distributed with mean $1/\mu_1 = 1/\mu$, $1/\mu_2 = 1/\mu$, and $1/\mu_3 = 1/\mu$.

A) Find the stability conditions of the network of queues [pt. 5].

B) Find the expected total number of customers in the entire network [pt. 15].

C) Find the average time spent in the system by a customer [pt. 15].

Exercise 2. Consider the M/G/1 queue with the following special behavior. Each arrival consists of a pair of jobs. Let λ be the pair arrival rate. One job is of type 1, the other is of type 2. Arriving pairs are serviced FCFS. A type 1 job requires a service time X. A type 2 job requires a service time Y. X and Y are random variables with general distribution.

Two service strategies are defined. Strategy R randomly ($50\% + 50\%$) chooses one of the two jobs in the pair to be serviced first. Strategy D always chooses job of type 1 to be serviced first.

Define W_p, W_1, W_2, and W as the waiting time for the pair, type 1 job, type 2 job, and any job, respectively. Define T_1, T_2, and T as the total time in the system for type 1 job, type 2 job, and any job, respectively.

A) For strategy R, determine the stability condition, W_p, W_1, W_2, T_1, T_2, and T [pt. 25].

B) For strategy D, determine the stability condition, W_1, W_2, T_1, T_2, and T [pt. 25].

C) Assume that $X + Y = d$ for any given job pair is a constant value, and X and Y are random variables distributed over $(0,d)$. Determine \overline{X} (and \overline{Y}) that will minimize T in strategy R and D, respectively [pt. 15].