PSY 2317 Transparency Copies
Chapter 3

Z Scores
Normal Curve
Sample and Population
Probability
DISTRIBUTION 1 from Chapter 2

M = 4 SD = 1.41
Z SCORES

A Z score places a score in a distribution.

The Z score tells how many standard deviations a raw score is away from (above or below) the mean.

\[
Z = \frac{X - M}{SD}
\]

<table>
<thead>
<tr>
<th>Distribution 1</th>
<th>M = 4</th>
<th>SD = 1.41</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X - M</td>
<td>(\frac{X - M}{SD})</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>-3</td>
<td>-3 / 1.41</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1 / 1.41</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1 / 1.41</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0 / 1.41</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0 / 1.41</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1 / 1.41</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1 / 1.41</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1 / 1.41</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2 / 1.41</td>
</tr>
</tbody>
</table>

Sum of Z scores is 0 always
DISTRIBUTION 2 from Chapter 2

M = 5 SD = 3.74
Z SCORES

A Z score places a score in a distribution.

The Z score tells how many standard deviations a raw score is away from (above or below) the mean.

\[Z = \frac{X - M}{SD} \]

Distribution 2
\[M = 5 \quad SD = 3.74 \]

<table>
<thead>
<tr>
<th>X</th>
<th>X - M</th>
<th>(\frac{X - M}{SD})</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4</td>
<td>-4 / 3.74</td>
<td>-1.07</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>-2 / 3.74</td>
<td>-.53</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>-2 / 3.74</td>
<td>-.53</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1 / 3.74</td>
<td>-.27</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1 / 3.74</td>
<td>-.27</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0 / 3.74</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0 / 3.74</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0 / 3.74</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>10 / 3.74</td>
<td>2.67</td>
</tr>
</tbody>
</table>

Sum of Z scores is 0 always
Z SCORES

- \(M_Z = 0 \) \(SD_Z = 1 \) (called standard scores)
- To convert a raw score to a \(Z \) score
 \[
 Z = \frac{X - M}{SD}
 \]
- To convert a \(Z \) score to a raw score
 \[
 Z = \frac{X - M}{SD}
 \]
 solve for \(X \)
 \[
 Z \times SD = \frac{X - M}{SD} \times SD
 \]
 \[
 Z \times SD = X - M
 \]
 \[
 Z \times SD + M = X
 \]

Distribution 1 \(M = 4 \) \(SD = 1.41 \)

\[
Z = .5 \quad X = ?
\]

\[
X = .5 \times 1.41 + 4 = .71 + 4 = 4.71
\]

Distribution 2 \(M = 5 \) \(SD = 3.74 \)

\[
Z = .5 \quad X = ?
\]

\[
X = .5 \times 3.74 + 5 = 1.87 + 5 = 6.87
\]
NORMAL CURVE (GAUSSIAN DISTRIBUTION)

SYMMETRIC
UNIMODAL
MEAN = MEDIAN = MODE
NORMAL CURVE (GAUSSIAN DISTRIBUTION)
NORMAL CURVE (GAUSSIAN DISTRIBUTION)

\[Z = 0 \]

50% 50%
NORMAL CURVE (GAUSSIAN DISTRIBUTION)

Scores

Z Scores

-2 -1 0 +1 +2

2% 14% 34% 34% 14% 2%
% of area under the curve between the mean and $Z = 1$

% of Area under the curve between the mean and $Z = 2$

% of area under the curve between the mean and $Z = -1$
% of Area under the curve
Below $Z = -1.2$

% of Area under the curve
between $Z = .5$
and $Z = 1.5$

% of Area under the curve
Below $Z = 1.5$
% of Area under the curve
between $Z = -0.2$
and $Z = 0.6$

Given a % of area -- find Z

Susie scored at the 70th percentile
What was her Z score?

Susie scored at the 30th percentile
What was her Z score?
Given a \(\% \) of area -- find \(Z \)

If 10\% got better scores than Susie
What is her percentile?
What is her \(Z \) score?
% of scores (area)

Below \(Z = 1.3 \)

% of scores (area)

Above \(Z = .4 \)

% of scores (area)

Between \(Z = -.7 \) and \(Z = -.2 \)
A score is at the 40th percentile
 the Z score is?

If 15% got a higher score
 What is the Z score?

What Z scores delimit the central 70% of area under the normal curve?
POPULATION vs SAMPLE

POPULATION

All those of interest for your research

SAMPLE

Those selected from the population to study

Should be representative of the population

Random selection is best - but
often not practical

<table>
<thead>
<tr>
<th>SAMPLE STATISTICS</th>
<th>POPULATION PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>M</td>
</tr>
<tr>
<td>VARIANCE</td>
<td>(SD^2)</td>
</tr>
<tr>
<td>STD DEV</td>
<td>(SD)</td>
</tr>
</tbody>
</table>
PROBABILITY

EXPECTED RELATIVE FREQUENCY

A RATIO

\[p = \frac{\# \text{ successful outcomes}}{\# \text{ possible outcomes}} \]

Coin toss

\[p \text{ (falls on heads)} = \frac{1}{2} = .5 \]

Throw a die

\[p \text{ (comes up 5)} = \]

\[p \text{ (comes up even)} = \]

\[p \text{ (comes up 7)} = \]

\[p \text{ (comes up 1, 2, 3, 4, 5 or 6)} = \]

\(p \) ranges from 0 to 1
ADDITION RULE

When 2 events are MUTUALLY EXCLUSIVE

(They can’t happen at the same time)

Example - Getting a 3 or 5 when tossing a die

\[p(3 \text{ or } 5) = \]

MULTIPLICATION (PRODUCT) RULE

When 2 events are INDEPENDENT

(One doesn’t influence the other)

Example - Tossing a coin twice

\[p(\text{2 heads}) = \]
NORMAL CURVE (GAUSSIAN DISTRIBUTION)

\[Z \leq -1 \] 14% 34% 34% 14% 2%

\[Z \geq 2 \] 2% 2%

\[p (Z \leq -1) = 16\% = .16 \]

\[p (Z \geq 2) = 2\% = .02 \]