Notes on 1st and 2nd order Bode Plots

\[H(j\omega) = \frac{1}{1+j\omega} \]

*Magnitude: \[|H(j\omega)|^2 = |H(j\omega)|^2 + \text{Re}[H(j\omega)]^2 + \text{Im}[H(j\omega)]^2 \]

\[|H(j\omega)| = \left| \frac{-j\omega}{1-j\omega} \right| \ast \left| \frac{-j\omega}{1+\omega^2} \right| = \frac{1}{1+\omega^2}, \text{ in normalized form } = \frac{1}{1+(\omega/\omega_0)^2} \]

\[|H(j\omega)|_{\text{dB}} = 20 \log_{10} |H(j\omega)| = -10 \log_{10} (1+\omega^2) \]

in normalized form \[-10 \log_{10} \left[1+(\omega/\omega_0)^2 \right] \]

*Phase: \[\text{Phase}(H(j\omega)) = \tan^{-1} \left(\left| \frac{\text{Im}[H(j\omega)]}{\text{Re}[H(j\omega)]} \right| \frac{1}{1+(\omega/\omega_0)^2} \right) \]

\[\text{Phase}(H(j\omega)) = \angle H(j\omega) = \tan^{-1} (-\omega) = -\tan^{-1} (\omega) \]

in normalized form \[\angle H(j\omega) = \tan^{-1} (\omega/\omega_0) \]

Diagram:
- **Magnitude:**
 - 0 dB
 - -3 dB cut-off
 - -20 dB/dec
 - **Phase:**
 - -90°
 - Asymptote

\[H(j\omega) = \frac{1}{(j\omega)^2 + 2\zeta j\omega + 1} = \frac{1}{(1 - \omega^2) + j2\zeta \omega} \]

Magnitude \[|H(j\omega)| = |H(j\omega)| = \sqrt{Re^2[H(j\omega)] + Im^2[H(j\omega)]} \]

\[|H(j\omega)| = \frac{1}{\sqrt{(1 - \omega^2)^2 + (2\zeta \omega)^2}} = \frac{1}{\sqrt{1 + 2(\zeta^2 - 1)(\frac{\omega}{\omega_0})^2 + (\frac{\omega}{\omega_0})^4}} \]

in normalized form

Phase:
\[\angle H(j\omega) = -\tan^{-1}\left[\frac{2\zeta \omega}{1 - \omega^2}\right] \]

in normalized form:
\[\angle H(j\frac{\omega}{\omega_0}) = -\tan^{-1}\left[\frac{2\zeta (\frac{\omega}{\omega_0})}{1 - (\frac{\omega}{\omega_0})^2}\right] \]

NOTE: for \(\zeta = \frac{\sqrt{2}}{2} + \frac{\omega}{\omega_0} = 1 \)

\[|H(j\frac{\omega}{\omega_0})| \approx -3 \text{ dB and} \]

\[\angle H[j(\frac{\omega}{\omega_0})]_{\omega = \omega_0} = -90^\circ \]

also:
\[\angle H[j(\frac{\omega}{\omega_0})]_{\omega = \omega_0} = -2\tan^{-1}(\frac{\omega}{\omega_0}) \]

\[1/(2\zeta) \]

\[\zeta = 0.1 \]
\[\zeta = 0.2 \]
\[\zeta = 0.3 \]
\[\zeta = 0.5 \]
\[\zeta = 0.7 \]
\[\zeta = 1.0 \]

-40 dB → dec
Bode Plot of a Constant Gain

The constant K_B has a magnitude $|K_B|$, a phase angle of 0° if K_B is positive, and -180° if K_B is negative. Therefore the Bode plots for K_B are simply horizontal straight lines as shown in Figs. 15-1 and 15-2.

![Bode Plot of a Constant Gain](image)

Fig. 15-1

Fig. 15-2
Bode Plot of a Pole of Order l

The frequency response function (or sinusoidal transfer function) for a pole of order l at the origin is

$$\frac{1}{(j\omega)^l}$$

(15.4)

The bode plots for this function are straight lines, as shown in Figs. 15-3 and 15-4.

Fig. 15-3 Frequency ω, rad/sec

Fig. 15-4 Frequency ω, rad/sec
Bode Plot of a Zero of Order \(l \) at the Origin

For a zero of order \(l \) at the origin,

\[
(j\omega)^l.
\] \hspace{1cm} (15.5)

the Bode plots are the reflections about the 0-db and 0° lines of Figs. 15-3 and 15-4, as shown in Figs. 15-5 and 15-6.
Bode Plot of a Single Pole

Consider the single-pole transfer function \(p/(s + p), \ p > 0 \). The Bode plots for its frequency response function

\[
\frac{1}{1 + j\omega/p}
\]

(15.6)

are given in Figs. 15-7 and 15-8. Note that the logarithmic frequency scale is normalized in terms of \(p \).
Bode Plot of a Single Zero

The Bode plots and their asymptotic approximations for the single-zero frequency response function

\[
1 + \frac{j\omega}{z_1}
\]

(15.7)

are shown in Figs. 15-9 and 15-10.
Bode Magnitude & Phase Plots of 2nd Order Systems

The Bode plots and their asymptotic approximations for the second-order frequency response function with complex poles,

\[
\frac{1}{1 + j2\xi \omega / \omega_n - (\omega / \omega_n)^2}
\]

\[0 \leq \xi \leq 1\] \hspace{1cm} (15.8)

are shown in Figs. 15-11 and 15-12. Note that the damping ratio \(\xi \) is a parameter on these graphs.

The magnitude asymptote shown in Fig. 15-11 has a corner frequency at \(\omega = \omega_n \) and a high-frequency slope twice that of the asymptote for the single-pole case of Fig. 15-7. The phase angle asymptote is similar to that of Fig. 15-8 except that the high-frequency portion is at \(-180^\circ\) instead of \(-90^\circ\) and the point of tangency, or inflection, is at \(-90^\circ\).

The Bode plots for a pair of complex zeros are the reflections about the 0 db and 0° lines of those for the complex poles.
Why Bode?
The great popularity of Bode magnitude plots stems from the following useful properties of logarithms:

If \(H(s) = \frac{(s + a)^n (s + b)^m}{(s + c)^l (s + d)^k} \) then

\[
\log_{10}[H(s)] = n \log_{10}(s + a) + m \log_{10}(s + b) - l \log_{10}(s + c) - k \log_{10}(s + d)
\]

Thus the magnitude functions are asymptotic to straight lines on a log-log plot.

dB or not dB? That is the question

Bode Plots are Magnitude and Phase versus frequency graphs. There are two log-log conventions for plotting magnitude versus frequency: log magnitude and decibels (dB).

Decibels (dB) to Magnitude Conversion

Magnitude dB = 20\log_{10}(\text{Magnitude})

Magnitude Conversion to Decibels (dB)

Magnitude = 10^{(\text{Magnitude dB])/20} Here is a conversion table:

<table>
<thead>
<tr>
<th>Decibel Examples</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000,000,000</td>
<td>+180</td>
</tr>
<tr>
<td>100,000,000</td>
<td>+160</td>
</tr>
<tr>
<td>10,000,000</td>
<td>+140</td>
</tr>
<tr>
<td>1,000,000</td>
<td>+120</td>
</tr>
<tr>
<td>100,000</td>
<td>+100</td>
</tr>
<tr>
<td>10,000</td>
<td>+80</td>
</tr>
<tr>
<td>1,000</td>
<td>+60</td>
</tr>
<tr>
<td>100</td>
<td>+40</td>
</tr>
<tr>
<td>10</td>
<td>+20</td>
</tr>
<tr>
<td>4</td>
<td>+12</td>
</tr>
<tr>
<td>2</td>
<td>+6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>-6</td>
</tr>
<tr>
<td>1/4</td>
<td>-12</td>
</tr>
<tr>
<td>0.1</td>
<td>-20</td>
</tr>
<tr>
<td>0.01</td>
<td>-40</td>
</tr>
<tr>
<td>0.001</td>
<td>-60</td>
</tr>
<tr>
<td>0.0001</td>
<td>-80</td>
</tr>
<tr>
<td>0.00001</td>
<td>-100</td>
</tr>
<tr>
<td>0.000001</td>
<td>-120</td>
</tr>
<tr>
<td>0.0000001</td>
<td>-140</td>
</tr>
<tr>
<td>0.00000001</td>
<td>-160</td>
</tr>
<tr>
<td>0.000000001</td>
<td>-180</td>
</tr>
</tbody>
</table>
Bode Plot Slopes for Poles and Zeros at the Origin

Bode plots of $(j\omega)^{\pm\rho}$
Bode Plot with Magnitude on a dB Scale in MATLAB

```matlab
% Magnitude of a Transfer Function on a dB Plot
% Save output figures in bitmap mode for best quality
s = tf('s');
H = 0.010*(s + 20)/((s + 1)*(s + 7000));
[mag phase w] = bode(H);

% Magnitude in dB not on log scale
mag2 = 20*log10(mag);

figure;
semilogx(w, reshape(mag2, 1, length(mag2)), 'LineWidth', 2);
grid minor; % finer grid
xlabel('\omega (rad/s)');
ylabel('Magnitude in dB');

figure;
semilogx(w, reshape(phase, 1, length(phase)), 'LineWidth', 2);
grid minor; % finer grid
xlabel('\omega (rad/s)');
ylabel('Phase (degrees)');
```

Bode Plot with Magnitude on Log Scale in MATLAB

```matlab
% Log Magnitude Plot
% Save output figures in bitmap mode for best quality
s = tf('s');
H = (s + 50)/((s + 10)*(s + 60000));
[mag phase w] = bode(H);

figure;
loglog(w, reshape(mag, 1, length(mag)), 'LineWidth', 2);
grid on;
xlabel('\omega (rad/s)');
ylabel('Magnitude');

figure;
semilogx(w, reshape(phase, 1, length(phase)), 'LineWidth', 2);
grid on;
xlabel('\omega (rad/s)');
ylabel('Phase (degrees)');
```
Stability from Bode Plots

Closed Loop System is stable provided the Gain of $L(j\omega)$ is less than 1 AND the phase of $L(j\omega)$ is less than 180° for all ω

Let ω_π be the phase cross over frequency where the phase of the open loop transfer function crosses 180°

Let ω_g be the gain cross over frequency where the open loop gain crosses 1.

Gain Margin = $1/|L(j\omega_\pi)|$ and Phase Margin = $\arg L(j\omega_g) + \pi$

System is marginally stable when
Gain Margin = 0 dB AND Phase Margin = 0° (i.e., $\omega_g = \omega_\pi$)
Gain & Phase Margin Defined

\[|L(j\omega)| \]
\[\frac{1}{\text{Gain Margin}} = |L(j\omega_\pi)| \]

\[\text{Phase Margin} = \arg L(j\omega_g) + \pi \]
16.2 GAIN FACTOR COMPENSATION

It is possible in some cases to satisfy all system specifications by simply adjusting the open-loop gain factor \(K \). Adjustment of the gain factor \(K \) does not affect the phase angle plot. It only shifts the magnitude plot up or down to correspond to the increase or decrease in \(K \). The simplest procedure is to alter the db scale of the magnitude plot in accordance with the change in \(K \) instead of reploting the curve. For example, if \(K \) is doubled, the db scale should be shifted down by \(20 \log_{10} 2 = 6.02 \) db.

EXAMPLE 16.1. The Bode plots for

\[
GH(j\omega) = \frac{K_B}{j\omega(1+j\omega/2)}
\]

are shown in Fig. 16-1 for \(K_B = 1 \).

The maximum amount \(K_B \) may be increased to improve the system steady state performance without decreasing the phase margin below 45° is determined as follows. In Fig. 16-1, the phase margin is 45° if the gain crossover frequency \(\omega_c \) is 2 rad/sec and the magnitude plot can be raised by as much as 9 db before \(\omega_c \) becomes 2 rad/sec. Thus \(K_B \) can be increased by 9 db without decreasing the phase margin below 45°.
FINDING CLOSED LOOP STABILITY MARGINS FROM THE OPEN LOOP GAIN

Problem: For the Open Loop Magnitude and Phase Plots shown below, find 1) Gain Crossover Frequency, ω_g 2) the Phase Crossover Frequency, ω_π 3) Gain Margin (linear and dB), and 4) the Phase margin (in degrees and radians)

Gain Margin:

$$K = \frac{1}{|L(j\omega_g)|} = \frac{1}{0.22} \approx 4.5 = 13 \text{ dB}$$
FINDING THE CLOSED LOOP PHASE MARGIN

Phase Margin = +\arg[L(j\omega)] = +47^\circ = +0.82 \text{ rad}
EXAMPLE: FINDING K FOR A GIVEN PHASE MARGIN REQUIREMENT

Problem: Find the value of K such that the open loop system with the frequency response shown has a closed loop PM of $+20^\circ$ (and thus the closed loop system is stable). (When PM=0°, K is Gain Margin)

$$K = \frac{1}{|L(j\omega_d)|} = \frac{1}{0.45} = 2.22$$
EXAMPLE: FINDING K FOR A GIVEN PHASE MARGIN REQUIREMENT

\[\text{PM} = +20^\circ \]

\[\omega_d = 0.7 \text{rad/ sec} \]
CHAPTER 6 FREQUENCY RESPONSE

MAGNITUDE PLOT FOR $K=2.22$

$|KL(j\omega)| = \omega$

$\omega_d = 0.7rad / sec.$
CHAPTER 6 FREQUENCY RESPONSE

PHASE PLOT FOR $K=2.22$

$\arg[KL(j\omega)]$

ω (rad/s)

PM = + 20°
What is the open loop transfer function $KL(j\omega)$ for the system whose magnitude and phase plots are shown on the previous few slides?

Inspection of magnitude and phase plot indicates that $KL(j\omega)$ is of the form:

$$KL(j\omega) = \frac{K_1}{j\omega\left(1 + \frac{j\omega}{\omega_0}\right)^2}$$

where $|KL(j\omega)|_{\omega=0.10} = 10 \approx |K_1/(j\omega)|_{\omega=0.10} = K_1/\omega_{0.10} = 10K_1 \Rightarrow K_1 = 1$

$\phi(\omega=\omega_0) = \phi[1/(j\omega_0)] + \phi\{1/[1+j(\omega_0/\omega_0)]^2\} = -90^\circ - 90^\circ = -180^\circ \Rightarrow \omega_0 = 1$

Hence the transfer function is:

$$KL(j\omega) = \frac{1}{j\omega(1 + j\omega)^2}$$
\[L(\omega) = \frac{1}{\omega (\omega + 1)(\omega + 5)} = \frac{1}{\omega^3 + 6\omega^2 + 5\omega} \]

\[L(j\omega) = \frac{0.2}{j\omega(j\omega + 1)(j\omega/5 + 1)} \]

Magnitude (dB)

-6 dB/oct
-14 dB
-12 dB/oct
-40 dB/dec
-18 dB/oct
-60 dB/dec

Phase (Degrees)

-90°
-135°
-180°
-225°
-270°

Frequency (rad/sec)

0.25
0.5
1
2
4
8
16

-90° - \tan^{-1}(\omega) - \tan^{-1}(\omega/5)
MATLAB CODE:

$$\text{sys=tf([1],[1 6 5 0])}$$

Transfer function:

$$\frac{1}{s^3 + 6s^2 + 5s}$$

$$\text{>> margin(sys)}$$

The system is neutrally stable for a gain of $K=30$ and the crossover frequencies are at $\omega=\pm \sqrt{5} = 2.236$. This agrees with the Bode plot, since $K=10^\left(Gm dB/20\right) = 29.8$ and the phase crossover frequency is $\omega=2.24$ rad/sec.

A more realistic gain would be $K=4.7$, which yields a phase margin of 45° at a frequency of 0.75 rad/sec. The Gain Margin = 13.4 dB
\[H(s) = \frac{s}{(s+2)(s+3)} \]

\[|H(j\omega)| = \left| \frac{j\omega}{(3+j\omega)(2+j\omega)} \right| = \left| \frac{j\omega / c}{(1+j\omega/3)(1+j\omega/2)} \right| \]

\[\phi = \tan^{-1} \omega - 2\omega - \tan^{-1} \left(\frac{\omega}{3} \right) - \tan^{-1} \left(\frac{\omega}{2} \right) \]

\[\phi = 90^\circ - 2\omega - \tan^{-1} \left(\frac{\omega}{3} \right) - \tan^{-1} \left(\frac{\omega}{2} \right) = 90^\circ - 11.46 \omega - \tan^{-1} \left(\frac{\omega}{3} \right) - \tan^{-1} \left(\frac{\omega}{2} \right) \]

For \(\omega = 10.2 \), \(\phi \approx -180^\circ \)

\[c = 2 \text{\omega rad} = -11.46 \omega \text{ degrees} \]
MATLAB CODE:
\[
\text{>> sys =tf([1 0],[1 5 6])}
\]
Transfer function:
\[
\frac{s}{s^2 + 5s + 6}
\]
\[
\text{>> sys.outputd=0.2}
\]
Transfer function:
\[
\frac{s}{\exp(-0.2s) \cdot \frac{s}{s^2 + 5s + 6}}
\]
\[
\text{>> margin(sys)}
\]
Derive the Magnitude and Phase of the following functions of ω and plot both the Magnitude and Phase functions on the ω axis using the same logarithmic scale for $0 < \omega < \infty$. These are often referred to as Bode plots.

a) $j\omega$
b) $(j\omega)^2$
c) $(j\omega)^3$
d) $1/j\omega$
e) $1/(j\omega)^2$
f) $1/(j\omega)^3$

c) $1+j\omega$
d) $(1+j\omega)^2$
e) $1/(1+j\omega)$
f) $1/(1+j\omega)^2$

g) $(1+j3\omega)/(1+j2\omega)$
h) $(1+j2\omega)/(1+j3\omega)$
i) $j\omega/(1+j\omega)$

j) $j\omega/[(1+j2\omega)(1+j3\omega)]$
l) $exp(j2\omega)$
m) $exp(-j3\omega)$

n) $exp(-j4\omega)j\omega/[(1+j2\omega)(1+j3\omega)]$
o) $X(j\omega) = 2\sin(\omega T)/\omega$
1st order High Pass

\[\frac{\text{Mag}(dB)}{\log w} = \frac{20 \text{ dB}}{\text{dec}} \left| \frac{j \omega}{1+j \omega} \right| \]

\[\phi = \tan^{-1} \omega \]

1st order Bandpass

\[\frac{\text{Mag}(dB)}{\log w} = \frac{20 \text{ dB}}{\text{dec}} \left| \frac{j \omega}{(1+j \omega)(1+3j \omega)} \right| \]

\[\phi = -\tan^{-1} \frac{3 \omega}{\omega} - \tan^{-1} \frac{2 \omega}{\omega} \]

0 dB \[\left| e^{j \omega} \right| \text{ Linear } \omega \]

Linear Phase \[\phi = 2 \omega \]

0 dB \[\left| e^{-j \frac{3 \omega}{2}} \right| \text{ Linear } \omega \]

Linear Phase \[\phi = -3 \omega \text{ Linear } \omega \]

same 1st order bandpass

Magnitude (as above)

Phase \[\exp(-j\omega) \left(\frac{j \omega}{(1+2j \omega)(1+3j \omega)} \right) \]

\[\phi = -4 \omega + 90^\circ - \tan^{-1} \frac{3 \omega}{\omega} - \tan^{-1} \frac{2 \omega}{\omega} \]
\[X(j\omega) = \frac{2\sin(\omega T)}{\omega} \]

\[\phi(\omega) = \angle \frac{2\sin(\omega T)}{\omega} \]

Magnitude

Phase

\[\pi \]

\[0 \]

\[-\pi / T \]

\[\pi / T \]