In an open economy,
- spending need not equal output
- saving need not equal investment

Preliminaries

\[
C^d + I^d + G^d + \text{EX} = C^f + I^f + G^f + \text{IM}
\]

\[
C^d = \text{spending on domestic goods}
\]

\[
C^f = \text{spending on foreign goods}
\]

\[
\text{EX} = \text{exports} = \text{foreign spending on domestic goods}
\]

\[
\text{IM} = \text{imports} = C^f + I^f + G^f
\]

\[
\text{NX} = \text{net exports (a.k.a. the “trade balance”)}
\]

\[
\text{NX} = \text{EX} - \text{IM}
\]

GDP = expenditure on domestically produced g & s

\[
Y = C^d + I^d + G^d + \text{EX}
\]

\[
= (C - C^f) + (I - I^f) + (G - G^f) + \text{EX}
\]

\[
= C + I + G + \text{EX} - (C^f + I^f + G^f)
\]

\[
= C + I + G + \text{EX} - \text{IM}
\]

\[
= C + I + G + \text{NX}
\]

The national income identity in an open economy

\[
Y = C + I + G + \text{NX}
\]

or, \[
\text{NX} = Y - (C + I + G)
\]
Trade surpluses and deficits

- **Trade surplus**: output > spending and exports > imports

 Size of the trade surplus = NX

- **Trade deficit**: spending > output and imports > exports

 Size of the trade deficit = $-NX$

\[NX = \text{EX} - \text{IM} = Y - (C + I + G) \]

International capital flows

- **Net capital outflow**

 \[S - I = \text{net outflow of "loanable funds"} \]

 - net purchases of foreign assets
 - minus foreign purchases of domestic assets

 - When $S > I$, country is a net lender
 - When $S < I$, country is a net borrower

The link between trade & cap. flows

\[NX = Y - (C + I + G) \]

implies

\[NX = (Y - C - G) - I = S - I \]

Trade balance = net capital outflow

Thus, a country with a trade deficit ($NX < 0$) is a net borrower ($S < I$).

U.S.: "The world's largest debtor nation"

- Every year since 1980s: huge trade deficits and net capital inflows, i.e. net borrowing from abroad

- As of 12/31/2008:

 - U.S. residents owned $19.9 trillion worth of foreign assets
 - Foreigners owned $23.4 trillion worth of U.S. assets
 - U.S. net indebtedness to rest of the world: $3.5 trillion–higher than any other country, hence U.S. is the "world's largest debtor nation"

Saving, investment, and the trade balance (percent of GDP) 1960-2007

[Graph showing saving, investment, and trade balance]

Saving and investment in a small open economy

- An open-economy version of the loanable funds model from Chapter 3.

- Includes many of the same elements:

 - production function \[Y = \bar{Y} = F(\bar{K}, \bar{L}) \]

 - consumption function \[C = C(Y - T) \]

 - investment function \[I = I(r) \]

 - exogenous policy variables \[G = \bar{G}, \ T = \bar{T} \]
National saving: The supply of loanable funds

\[S = Y - C(Y - T) - G \]

As in Chapter 3, national saving does not depend on the interest rate

Assumptions about capital flows

a. domestic & foreign bonds are perfect substitutes (same risk, maturity, etc.)
b. perfect capital mobility: no restrictions on international trade in assets
c. economy is small: cannot affect the world interest rate, denoted \(r^* \)

a & b imply \(r = r^* \)
c implies \(r^* \) is exogenous

Investment: The demand for loanable funds

Investment is still a downward-sloping function of the interest rate, but the exogenous world interest rate… determines the country’s level of investment.

If the economy were closed...

…the interest rate would adjust to equate investment and saving:

But in a small open economy…

the exogenous world interest rate determines investment…

…and the difference between saving and investment determines net capital outflow and net exports

Next, three experiments:

1. Fiscal policy at home
2. Fiscal policy abroad
3. An increase in investment demand (exercise)
1. Fiscal policy at home

An increase in G or decrease in T reduces saving.

Results:
- $\Delta I = 0$
- $\Delta NX = \Delta S < 0$

2. Fiscal policy abroad

Expansionary fiscal policy abroad raises the world interest rate.

Results:
- $\Delta I < 0$
- $\Delta NX = -\Delta I > 0$

3. An increase in investment demand

Use the model to determine the impact of an increase in investment demand on NX, S, I, and net capital outflow.

ANSWERS:
- $\Delta I > 0$
- $\Delta S = 0$
- net capital outflow and NX fall by the amount ΔI

The nominal exchange rate

$e =$ nominal exchange rate, the relative price of domestic currency in terms of foreign currency
(e.g. Yen per Dollar)
A few exchange rates, as of 6/24/2009

<table>
<thead>
<tr>
<th>country</th>
<th>exchange rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro area</td>
<td>0.72 Euro/$</td>
</tr>
<tr>
<td>Indonesia</td>
<td>10,337 Rupiah/$</td>
</tr>
<tr>
<td>Japan</td>
<td>95.9 Yen/$</td>
</tr>
<tr>
<td>Mexico</td>
<td>13.3 Pesos/$</td>
</tr>
<tr>
<td>Russia</td>
<td>31.4 Rubles/$</td>
</tr>
<tr>
<td>South Africa</td>
<td>8.1 Rand/$</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.61 Pounds/$</td>
</tr>
</tbody>
</table>

The real exchange rate

\[\epsilon = \text{real exchange rate}, \text{ the relative price of domestic goods in terms of foreign goods} \]

(e.g. Japanese Big Macs per U.S. Big Mac)

Understanding the units of \(\epsilon \)

\[\epsilon = \frac{e \times P}{P^*} \]

\(e \times P \) = (Yen per $) \times ($ per unit U.S. goods) = Yen per unit Japanese goods / Yen per unit U.S. goods = Units of Japanese goods per unit of U.S. goods

\[\epsilon = \frac{120 \times 2.50}{200 \text{ Yen}} = 1.5 \]

\(~McZample~\)

- one good: Big Mac
- price in Japan: \(P^* = 200 \text{ Yen} \)
- price in USA: \(P = 2.50 \)
- nominal exchange rate \(e = 120 \text{ Yen}/\$ \)

\[\epsilon = \frac{e \times P}{P^*} = \frac{120 \times 2.50}{200 \text{ Yen}} = 1.5 \]

To buy a U.S. Big Mac, someone from Japan would have to pay an amount that could buy 1.5 Japanese Big Macs.

\(\epsilon \) in the real world & our model

- In the real world:
 We can think of \(\epsilon \) as the relative price of a basket of domestic goods in terms of a basket of foreign goods
- In our macro model:
 There’s just one good, “output.” So \(\epsilon \) is the relative price of one country’s output in terms of the other country’s output

How \(NX \) depends on \(\epsilon \)

\(\epsilon \) \Rightarrow U.S. goods become more expensive relative to foreign goods

\(\Rightarrow \downarrow EX, \uparrow IM \)

\(\Rightarrow \downarrow NX \)
The net exports function
- The net exports function reflects this inverse relationship between NX and ε:
 $$NX = NX(\varepsilon)$$

The NX curve for the U.S.
- At high enough values of ε, U.S. goods become so expensive that we export less than we import.

How ε is determined
- The accounting identity says $NX = S - I$
- We saw earlier how $S - I$ is determined:
 - S depends on domestic factors (output, fiscal policy variables, etc)
 - I is determined by the world interest rate r^*
- So, ε must adjust to ensure
 $$NX(\varepsilon) = \bar{S} - I(r^*)$$
Interpretation: supply and demand in the foreign exchange market

demand: Foreigners need dollars to buy U.S. net exports.
supply: Net capital outflow $(S - I)$ is the supply of dollars to be invested abroad.

Next, four experiments:
1. Fiscal policy at home
2. Fiscal policy abroad
3. An increase in investment demand (exercise)
4. Trade policy to restrict imports

1. Fiscal policy at home
A fiscal expansion reduces national saving, net capital outflow, and the supply of dollars in the foreign exchange market...
...causing the real exchange rate to rise and NX to fall.

2. Fiscal policy abroad
An increase in r^* reduces investment, increasing net capital outflow and the supply of dollars in the foreign exchange market...
...causing the real exchange rate to fall and NX to rise.

NOW YOU TRY:
3. Increase in investment demand
Determine the impact of an increase in investment demand on net exports, net capital outflow, and the real exchange rate

ANSWERS:
3. Increase in investment demand
An increase in investment reduces net capital outflow and the supply of dollars in the foreign exchange market...
...causing the real exchange rate to rise and NX to fall.
4. Trade policy to restrict imports

At any given value of ε, an import quota $\Rightarrow IM \Rightarrow NX \Rightarrow$ demand for dollars shifts right

Trade policy doesn’t affect S or I, so capital flows and the supply of dollars remain fixed.

The determinants of the nominal exchange rate

- Start with the expression for the real exchange rate:
 $$\varepsilon = \frac{e \times P}{P'}$$

- Solve for the nominal exchange rate:
 $$e = \varepsilon \times \frac{P'}{P}$$

The determinants of the nominal exchange rate

- Rewrite this equation in growth rates (see “arithmetic tricks for working with percentage changes,” Chap 2):
 $$\frac{\Delta e}{e} = \frac{\Delta \varepsilon}{\varepsilon} + \frac{\Delta P'}{P'} - \frac{\Delta P}{P} = \frac{\Delta \varepsilon}{\varepsilon} + \pi' - \pi$$

- For a given value of ε, the growth rate of e equals the difference between foreign and domestic inflation rates.

The determinants of the nominal exchange rate

Results:
- $\Delta \varepsilon > 0$ (demand increase)
- $\Delta NX = 0$ (supply fixed)
- $\Delta IM < 0$ (policy)
- $\Delta EX < 0$ (rise in ε)

The determinants of the nominal exchange rate

- So e depends on the real exchange rate and the price levels at home and abroad…

…and we know how each of them is determined:

$$\frac{M'}{P'} = L'(r^* + \pi^*, Y')$$

$$\frac{NX(\varepsilon)}{\varepsilon} = S - I(\varepsilon^*)$$

Inflation differentials and nominal exchange rates for a cross section of countries

- % change in nominal exchange rate
 - 30%
 - 25%
 - 20%
 - 15%
 - 10%
 - 5%
 - 0%
 - -5%
 - -10%

- inflation differential
 - Mexico
 - Iceland
 - Pakistan
 - S. Africa
 - Canada
 - S. Korea
 - Australia
 - Singapore
 - Japan
 - U.K.
Purchasing Power Parity (PPP)

Two definitions:
- A doctrine that states that goods must sell at the same (currency-adjusted) price in all countries.
- The nominal exchange rate adjusts to equalize the cost of a basket of goods across countries.

Reasoning:
- Arbitrage, the law of one price

Purchasing Power Parity (PPP)

PPP:
\[\varepsilon \times P = P^* \]

Cost of a basket of foreign goods, in foreign currency.

Cost of a basket of domestic goods, in foreign currency.

Solve for \(\varepsilon \):
\[\varepsilon = \frac{P^*}{P} \]

PPP implies that the nominal exchange rate between two countries equals the ratio of the countries' price levels.

Does PPP hold in the real world?

No, for two reasons:
1. International arbitrage not possible.
 - Nontraded goods
 - Transportation costs
2. Different countries' goods not perfect substitutes.

Yet, PPP is a useful theory:
- It's simple & intuitive.
- In the real world, nominal exchange rates tend toward their PPP values over the long run.

CASE STUDY:
The Reagan deficits revisited

<table>
<thead>
<tr>
<th>Year</th>
<th>Change in G - T</th>
<th>Change in S</th>
<th>Change in r</th>
<th>Change in NX</th>
<th>Change in (\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970s</td>
<td>2.2</td>
<td>19.6</td>
<td>1.1</td>
<td>-0.3</td>
<td>115.1</td>
</tr>
<tr>
<td>1980s</td>
<td>3.9</td>
<td>17.4</td>
<td>6.3</td>
<td>-2.0</td>
<td>129.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change</th>
<th>Closed economy</th>
<th>Small open economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>Down</td>
</tr>
</tbody>
</table>

Data: decade averages; all except \(\varepsilon \) are expressed as a percent of GDP; \(\varepsilon \) is a trade-weighted index.

The U.S. as a large open economy

- So far, we’ve learned long-run models for two extreme cases:
 - Closed economy (chap. 3)
 - Small open economy (chap. 5)
- A large open economy – like the U.S. – falls between these two extremes.
- The results from large open economy analysis are a mixture of the results for the closed & small open economy cases.
- For example…
A fiscal expansion in three models

A fiscal expansion causes national saving to fall. The effects of this depend on openness & size:

<table>
<thead>
<tr>
<th></th>
<th>closed economy</th>
<th>large open economy</th>
<th>small open economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>rises</td>
<td>rises, but not as much as in closed economy</td>
<td>no change</td>
</tr>
<tr>
<td>I</td>
<td>falls</td>
<td>falls, but not as much as in closed economy</td>
<td>no change</td>
</tr>
<tr>
<td>NX</td>
<td>no change</td>
<td>falls, but not as much as in small open economy</td>
<td>falls</td>
</tr>
</tbody>
</table>

Chapter Summary

- National income accounts identities:
 - \(Y = C + I + G + NX \)
 - trade balance \(NX = S - I \) net capital outflow

- Impact of policies on \(NX \):
 - \(NX \) increases if policy causes \(S \) to rise or \(I \) to fall
 - \(NX \) does not change if policy affects neither \(S \) nor \(I \). Example: trade policy

Chapter Summary

- Exchange rates
 - nominal: the price of a country's currency in terms of another country's currency
 - real: the price of a country's goods in terms of another country's goods
 - The real exchange rate equals the nominal rate times the ratio of prices of the two countries.

Chapter Summary

- How the real exchange rate is determined
 - \(NX \) depends negatively on the real exchange rate, other things equal
 - The real exchange rate adjusts to equate \(NX \) with net capital outflow

Chapter Summary

- How the nominal exchange rate is determined
 - \(e \) equals the real exchange rate times the country's price level relative to the foreign price level.
 - For a given value of the real exchange rate, the percentage change in the nominal exchange rate equals the difference between the foreign & domestic inflation rates.