NP Completeness

Classes $P \cap NP$

Decision problems only
(Yes/No)

NP
Problem, Input: $W \in \Sigma^*$

Yes/No? If an additional "guess" g is supplied, then in polynomial time, we can verify that W is a

Yes instance of problem.

$\begin{array}{c|c}
\text{Yes} & \text{No} \\
\hline
\exists \text{ guess } g \text{ such that verification algorithm outputs "Yes" in detem poly time} & \not\exists \text{ g, verification alg always outputs "No"}
\end{array}$
Suppose \(G \)

\[
G \rightarrow G^{+}
\]

\[
\text{for } a \in V \text{ do } k \rightarrow k + 1 \text{ while } (G', k) \text{ is an instance of clique do } k + 1
\]

Then we can find a max clique in poly time.

\(G \) is a clique (decider) has a polynomial-time algorithm, \((E, P)\).

If clique (decider) has a polynomial-time algorithm, \((E, P)\), does \(G \) have a clique of cardinality \(k \)?

Decision (clique): Given \((G, k)\), integer \(k \),

- the induced subgraph \(G[S] \) is a complete graph
- \((G, k)\) is a clique if \(G[S] \) is a clique
- \((G, k)\) is a clique if \(G[S] \) is a clique

1. Clique problem: Given \((G, k)\), find a clique

(wrt respect to polynomial time)

Equivalence between decision optimization problems
Output: \(t \uparrow X \uparrow t \)

Then \(\text{Pt? X? back into X.} \)

If \(X \) is not a No Instance of SubsetSum

Remove \(X \) from \(X \)

For \(i = 0 \) to \(n \) do

\[\{ x_1, \ldots, x_n \} \rightarrow X \]

While \(i \leq n \), \(t \) is a No Instance of SubsetSum

\[\text{If } \sum_{j=1}^{i} x_j < x_{i+1} + \sum_{j=1}^{i} x_j \text{, then } t \rightarrow x_1 + x_2 + \ldots + x_n \]

Decision: Given \(x_1, \ldots, x_n \), \(t \), find a subset of \(x_1, \ldots, x_n \) whose sum is as close as possible to \(t \), without going over it.

Find a subset of \(x_1, \ldots, x_n \) whose sum is as close as possible to \(t \).

\[\left\lfloor \frac{x \text{?} 0 \text{? } t}{x \text{?} 0 \text{? } t} \right\rfloor \]

2. SubsetSum problem (Karpred):
Some NP Completeness proofs

Known NP-complete problems: Satisfiability, Clique, Subset Sum

New problem: Subgraph isomorphism

\[\langle G_1, G_2 \rangle : \text{Is there a subgraph of } G_2 \text{ that is isomorphic to } G_1? \]

Claim: Subgraph isomorphism is NP-complete

Proof:
1. \(SI \in NP \). Given a guess: mapping from \(G_1 \to G_2 \),
 we can verify in poly time that this mapping is correct
 \[\text{Verify that } m \text{ is 1 to 1 and also for each } (u,v) \in E_1, \quad (m(u), m(v)) \in E_2 \]
2. All problems in \(NP \) can be reduced to \(SI \).
 Known NP-complete problem
 \(\text{Clique} \leq_p SI \).
Consider an input \((G', k) \) to the clique problem:

\[G = (V, E) \] is \(k \)-complete graph on \(k \) nodes.

Construct an instance of SI:

\[C_1 = \overline{k}=K \]

\[C_2 = G \]

\[\rightarrow \] If \(C_2 \) does not have a clique of size \(k \) (NO Instance)

\[\Rightarrow \] is isomorphic to \(C_1 \rightarrow \text{yes instance of SI} \]

A yes instance of SI. A K-clique in \(G = G' \) is

\[\Rightarrow \] If \(C \) has a clique of size \(k \), then \((G, k) \) is

\[\rightarrow \] (K-clique)

\[\Rightarrow \] Consider an instance of SI:
\[
\begin{align*}
&\text{Let } x = \frac{2}{x} \text{ and } x = 2 - x.
\end{align*}
\]