Welcome to your fourth homework. Reminder: if you find a mistake/misprint, do not e-mail or call me. Write it down on the first page of your solutions and you may give yourself a partial credit — but keep in mind that the total for your homeworks cannot exceed 20 points.

Now let us look at your problems.
1. a) Here $f(x|\theta) = (2\pi)^{1/2}e^{-(x-\theta)^2/2}I(-\infty < x < \infty)$ and $-\infty < \theta < \infty$. Write

$$L(x, y|\theta) := \frac{f(x|\theta)}{f(y|\theta)} = e^{-\frac{1}{2}(\sum_{l=1}^{n}(x_l^2 - y_l^2) + \theta n(\bar{x} - \bar{y})}.$$

We see that $L(x, y|\theta) \equiv K(x, y)$ for all θ and all pairs (x, y) iff $\bar{x} = \bar{y}$. Thus $T = \bar{X}$ is Minimal SS (MSS).

b) Here $f(x|\theta) = e^{-(x-\theta)}I(x > \theta)$ and $\theta \in (-\infty, \infty)$. Write,

$$L(x, y|\theta) := \frac{f(x|\theta)}{f(y|\theta)} = e^{\sum_{l=1}^{n}x_l I(x_l > \theta)}.$$

(i) Suppose that $L(x, y|\theta) \equiv K(x, y)$ for all $\theta \in (-\infty, \infty)$. This yields that $x_{(1)} = y_{(1)}$.

(ii) Suppose that $x_{(1)} = y_{(1)}$. Then (1) implies that $L(x, y|\theta)$ does not depend on θ.

The properties (i) and (ii) establish, according to Theorem 6.2.13, that $T = X_{(1)}$ is the minimal sufficient statistic.

e) Here $f(x|\theta) = (1/2)e^{-|x-\theta|}I(x \in (-\infty, \infty))$ for $\theta \in (-\infty, \infty)$. Write for ordered observations:

$$L(x, y|\theta) := \frac{f(x|\theta)}{f(y|\theta)} = e^{\sum_{l=1}^{n}x_l I(x_l > \theta)}.$$

$$= e^{\sum_{l=1}^{n}y_l I(y_l > \theta)}$$

Now note that if at least one pair of ordered observations is such that $x_{(l)} \neq y_{(l)}$ then $L(x, y|\theta)$ depends on θ. Observing this, Theorem 6.2.13 and some straightforward steps (similar to the previous case), show that $T = (X_{(1)}, \ldots, X_{(n)})$ is MSS.

2. Exerc. 6.11. (a) All the considered distributions (random variables) are from a so-called location family where

$$X \overset{D}{=} Z + \theta, \quad Z \sim f_X(x|\theta = 0).$$

You can also think about (2) in the following way: there is a random variable Z with distribution corresponding to $\theta = 0$, and then any other RV from the same distribution with parameter θ is generated as shown in (2).
Let us prove (2) using moment generating function approach (another approach is to calculate \(f_X(x|\theta) \) using our techniques in Chapter 2). Recall that \(M_X(t) = E(e^{tX}) \) and \(X \) has the same distribution as \(Y \) iff \(M_X(t) \equiv M_Y(t) \) for all \(t \) in some vicinity of \(t = 0 \), say \(t \in (-\delta, \delta) \), \(\delta > 0 \).

Thus, to check (2), we need to show that

\[
E(e^{tX}) = E(e^{t(Z+\theta)}), \quad t \in (-\delta, \delta)
\]

(3)

for the case of a location family \(f(x|\theta) =: \psi(x-\theta) \). Here \(f_Z(z|\theta) = \psi(z) \) is the pdf of \(Z \).

To prove (3) we write

\[
M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} \psi(x-\theta)e^{tx}dx
\]

[make change of variable \(z = x - \theta \) and continue]

\[
= \int_{-\infty}^{\infty} \psi(z)e^{t(z+\theta)}dz
\]

[now we continue for all \(t \) that the integral exists]

\[
= E\{e^{t(Z+\theta)}\} = M_{Z+\theta}(t).
\]

What was wished to show.

Now, if \(Y_i = X(n) - X(i) \) then according to (2) we have \(Y_i = Z(n) - Z(i) \), and this shows that the distribution of \(Y_i \) does not depend on \(\theta \) because the distribution of \(Z \) does not depend on \(\theta \).

We conclude that in all examples of a location family of distributions, statistics \(Y_i \) are ancillary for the location parameter \(\theta \). By the way, can you propose several other ancillary statistics?

(b)

(i) For the case (a) - normal distribution - the MSS is \(\bar{X} \), and it is \textit{complete} because normal distribution belongs to an exponential family. Indeed, we can write

\[
f(x|\theta) = C(\theta)h(x)e^{\theta x}
\]

and then use Theorem 6.2.25. Then Basu’s Theorem yields that \(\bar{X} \) and \(Y_i \) are independent.

(ii) For the case (b) - location exponential family - the MSS is \(X_{(1)} \). Is it complete? Let us check. Suppose that for a function \(g \)

\[
E_{\theta}(g(X_{(1)})) \equiv 0, \quad \theta \in (-\infty, \infty).
\]

(4)

This is equivalent to

\[
\int_{\theta}^{\infty} f_{X_{(1)}}(t|\theta)g(t)dt \equiv 0, \quad \theta \in (-\infty, \infty).
\]

(5)
Well, now is the time to remember the density for \(X(1) \). While I know that you remember the formula, let us one more time deduce it. We begin with the corresponding cdf (cumulative distribution function)

\[
F_{X(1)}(t|\theta) = P(X(1) \leq t) = 1 - P(X(1) > t)
\]

[remember that the last probability is called the survivor function]

\[
= 1 - P(X_1 > t, X_2 > t, \ldots, X_n > t) = 1 - [P(X_1 > t)]^n
\]

\[
= \{1 - \left[\int_t^\infty e^{-(x-\theta)}dx \right]^n \} I(t > \theta) = [1 - e^{-n(t-\theta)}]I(t > \theta).
\]

Taking the derivative of the cdf we get the pdf

\[
f_{X(1)}(t|\theta) = ne^{-n(t-\theta)}I(t > \theta).
\]

Now we plug-in this density in (5),

\[
n \int_{\theta}^{\infty} e^{-n(t-\theta)} g(t) dt \equiv 0, \ \theta \in (-\infty, \infty).
\]

The last relation is equivalent to

\[
q(\theta) := \int_{\theta}^{\infty} e^{-nt} g(t) dt \equiv 0, \ \theta \in (-\infty, \infty).
\]

From here we get \(dq(\theta)/d\theta \equiv 0 \) as well. In its turn, this yields (take the derivative)

\[
e^{-n\theta} g(\theta) \equiv 0, \ \theta \in (-\infty, \infty),
\]

which finally yields \(g(\theta) \equiv 0 \) for all \(\theta \in (-\infty, \infty) \). We established that \(X(1) \) is complete!

Conclusion: By Basu’s Theorem the CMSS \(X(1) \) is independent of the ancillary statistic \(Y := \{X(n) - X(i), i = 1, 2, \ldots, n-1\} \).

REMARK: Do you see that this exponential distribution is not from the exponential family? This is the reason for the direct proof!

(iii) For the double-exponential distribution the statistic \(T = (X(1), X(2), \ldots, X(n)) \) is MSS. Clearly it is not independent of \(Y := \{X(n) - X(i), i = 1, 2, \ldots, n-1\} \) because if you know \(T \) then you know \(Y \).

3. Exers. 6.19. Let us begin with distribution 1. Let \(\psi(X) \) be such that \(E_p(\psi(X)) \equiv 0 \) for all \(p \in (0, 1/4) \). This means that

\[
p\psi(0) + 3p\psi(1) + (1 - 4p)\psi(2) \equiv 0,
\]

or equivalently

\[
p[\psi(0) + 3\psi(1) - 4\psi(2)] \equiv -\psi(2), \ p \in (0, 1/4).
\]

This is possible for \(\psi(2) = 0 \) and \(\psi(0) = -3\psi(1) \neq 0 \). We conclude that \(\psi(k) \) is not necessarily equal to 0, so the family of distributions of \(X \) is not complete.
For the second distribution, similarly assume that $E_p\{\psi(X)\} \equiv 0$ for $p \in (0, 1/2)$. This yields
\[p\psi(0) + p^2\psi(1) + (1 - p - p^2)\psi(2) \equiv 0, \quad p \in (0, 1/2). \]
The last relations yields
\[p^2[\psi(1) - \psi(2)] + p[\psi(0) - \psi(2)] + \psi(2) \equiv 0, \quad p \in (0, 1/2). \]
A polynom is identically equal to zero on an interval iff all its coefficients are zero. This yields that $\psi(k) \equiv 0$.

Conclusion: The distribution is complete.

4. Exerc. 6.20.
(b) We have
\[f(x|\theta) = \frac{\theta}{(1 + x)^{1+\theta}}, \quad x \in (0, \infty), \quad \theta > 0. \]
Note that here $\Omega = (0, \infty)$. Write,
\[f(x|\theta) = \theta^n \prod_{l=1}^n (1 + x_l)^{1+\theta} = \theta^n e^{(1+\theta)\sum_{l=1}^n \ln(1+x_l)}. \]
We see that the distribution is from an exponential family and $\Omega := (0, \infty)$ contains an open set, say $(1, 2)$. Thus, by Theorem 6.2.25 the statistic \(T := \sum_{l=1}^n \ln(1 + X_l) \) is CSS.

(c) Here
\[f(x|\theta) = \log(\theta)(\theta - 1)\theta^x, \quad x \in \Omega := (1, \infty). \]
Write,
\[f(x|\theta) = [\log(\theta)/(\theta - 1)]^n \prod_{l=1}^n \theta^{x_l} = [\log(\theta)/(\theta - 1)]^n e^{\theta \sum_{l=1}^n x_l}. \]
This is the distribution from an exponential family and Ω contains an open set, say $(2, 5)$. Thus, by Theorem 6.2.25 the statistic \(T = \sum_{l=1}^n X_l \) (or \bar{X}) is CSS.

(e). Here we have
\[f(x|\theta) = \left(\begin{array}{c} 2 \\ x \end{array} \right) \theta^x (1 - \theta)^{2-x}, \quad x = 0, 1, \ldots, \theta \in [0, 1]. \]
Write,
\[f(x|\theta) = \prod_{l=1}^n \left(\begin{array}{c} 2 \\ x_l \end{array} \right) \theta^{x_l} (1 - \theta)^{2-x_l} = \prod_{l=1}^n \left(\begin{array}{c} 2 \\ x_l \end{array} \right) e^{\ln(\theta/(1-\theta)) \sum_{l=1}^n x_l (1 - \theta)^{2n}}. \]
This is again the distribution from an exponential class with Ω containing an open interval. This \bar{X} is CSS by Theorem 6.2.25.
5. Exerc. 6.21. X is distributed according to
\[f(x|\theta) = \frac{(\theta/2)^{|x|}(1-\theta^{|x|})}{I(x \in \{-1,0,1\})}, \quad \theta \in [0,1]. \]

(a) X is sufficient (of course - this is the observation) but not complete. Let us show this. Suppose that $E_{\theta}\psi(X)) \equiv 0, \theta \in [0,1]$. This is equivalent to
\[(\theta/2)\psi(-1_\theta + (1-\theta)\psi(0) + (\theta/2)\psi(1) \equiv 0, \quad \theta \in [0,1], \]
or
\[\theta_1(1/2)\psi(-1) - \psi(0) + (1/2)\psi(1)] + \psi(0) \equiv 0, \quad \theta \in [0,1]. \]
A polynom is zero over an interval iff all its coefficients are zero. This implies that
\[
\begin{cases}
\psi(0) = 0 \\
(1/2)[\psi(-1) + \psi(1)] - \psi(0) = 0
\end{cases}
\]
Solving this system yields $\psi(0) = 0$ and $\psi(-a) = -\psi(1)$. As a results, $\psi(k)$ is not necessarily identical zero. For instance, one may choose $\psi(-1) = 5, \psi(0) = 0$ and $\psi(1) = -5$.

b),c) Let us begin with c). Write
\[f(x|\theta) = e^{[x\ln(\theta^2(1-\theta))]}(1-\theta)I(x \in \{-1,0,1\}). \]
This is the distribution from an exponential class. Then by Theorem 6.2.25, the statistic $|X|$ is CSS. Clearly it is minimal as well (what can you reduce here?), or if unclear use Theorem 6.2.28.

6. Exerc. 6.30. We have $f(x|\mu) = e^{-(x-\mu)}I(x > \mu), \mu \in R$.

(a) Write
\[f(x|\mu) = e^{-\sum_{i=1}^{n} x_i + n\mu}I(x(1) > \mu). \]
Here $X_{(1)}$ is clearly SS and minimal as well. But completeness we should verify via its definition because this is not the distribution from an exponential class, that is, we cannot use Theorem 6.2.25.

Let us find the distribution of $X_{(1)}$; we did it several times already so I just briefly note that
\[P(X_{(1)} \leq t) = [1 - e^{-n(t-\mu)}]I(t \geq \mu), \]
and this yields
\[f_{X_{(1)}}(t) = ne^{-(t-\mu)}I(t \geq \mu). \]
Then is $E_{\mu}\{\psi(X_{(1)})\} \equiv 0$ then
\[\int_{\mu}^{\infty} e^{-n(x-\mu)}\psi(x)dx \equiv 0, \quad \mu \in (-\infty, \infty). \]
Now, the last identity implies that $\psi(\mu) \equiv 0$. To prove this, note that we have $\int_{\mu}^{\infty} e^{-nx}\psi(x)dx \equiv 0$ and then take the derivative of the integral with respect to μ. Thus $X_{(1)}$ is complete.
(b) Using notation in the text, \(S^2 := \left[\frac{1}{(n-1)} \right] \sum_{l=1}^{n} (X_l - \bar{X})^2 \).

We are dealing with the location parameter here, so we can again use the same trick as before. Set \(X = Z + \mu \) where \(Z \) is distributed with pdf \(f_Z(z) = e^{-z} I(z > 0) \). Then

\[
S^2 = (n-1)^{-1} \sum_{l=1}^{n} (Z_l + \mu - (Z + \mu))^2 = (n-1)^{-1} \sum_{l=1}^{n} (Z_l - Z)^2.
\]

This shows us that \(S^2 \) is ancillary with respect to \(\mu \). Then Basu’s Theorem implies that \(X_{(1)} \) and \(S^2 \) are independent.