Requirements-based Test Generation
for Predicate Testing

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas
ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Speaker Biographical Sketch

- Professor & Director of International Outreach
 Department of Computer Science
 University of Texas at Dallas
- Guest Researcher
 Computer Security Division
 National Institute of Standards and Technology (NIST)
- Vice President, IEEE Reliability Society
- Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)
- Principal Investigator, NSF TUES (Transforming Undergraduate Education in
 Science, Technology, Engineering and Mathematics) Project
 - Incorporating Software Testing into Multiple Computer Science and Software
 Engineering Undergraduate Courses
- Founder & Steering Committee co-Chair for the SERE conference
 (IEEE International Conference on Software Security and Reliability)
 (http://paris.utdallas.edu/sere13)
Learning Objectives

- Equivalence Class partitioning
- Boundary value analysis

Essential *black-box* techniques for generating tests for *functional testing*

- Test generation from predicates

Three Techniques

- BOR
- BRO
- BRE
We will now examine three techniques – BOR (Boolean Operator), BRO (Boolean and Relational Operator), and BRE (Boolean Relational Expression) for generating test cases that are guaranteed to detect certain faults in the coding of conditions.

The conditions from which test cases are generated might arise from requirements or might be embedded in the program to be tested.

Conditions guard actions
– For example,

\[
\text{if condition then action}
\]

is a typical format of many functional requirements.

A condition is represented formally as a predicate, also known as a Boolean expression. For example, consider the requirement “if the printer is ON and has paper then send document to printer” This statement consists of a condition part and an action part.

The following predicate represents the condition part of the statement

\[
p_r : (\text{printerstatus} = \text{ON}) \land (\text{printertray} \neq \text{empty})
\]
Predicates

- Relational operators (relop): \{ <, \leq, >, \geq, =, \neq \}

 = and = are equivalent

- Boolean operators (bop): \{!, \land, \lor, \xor\} also known as

 \{not, AND, OR, XOR\}

- Relational expression: \(e_1 \text{ relop } e_2 \) (e.g., \(a + b < c \))

 \(e_1 \) and \(e_2 \) are expressions whose values can be compared using relop

- Simple predicate: A boolean variable or a relational expression

 (e.g., \(x < 0 \))

- Compound predicate: Join one or more simple predicates using bop

 (e.g., \(gender = = "female" \land age > 65 \))

Boolean Expressions (1)

- Boolean expression: one or more Boolean variables joined by bop.

 - Example: \((a \land b \lor !c) \) where \(a, b, \) and \(c \) are also known as literals.

- Negation is also denoted by placing a bar over a Boolean expression.

 such as in \((a \land \overline{b}) \)

- We also write \(ab \) for \(a \land b \) and \(a + b \) for \(a \lor b \) when there is no confusion.

- Singular Boolean expression: When each literal appears only once.

 - Example: \((a \land b \lor \overline{c}) \)
Boolean Expressions (2)

- **Disjunctive normal form (DNF):** Sum of product terms:

 e.g., \((pq) + (rs) + (ac)\).

- **Conjunctive normal form (CNF):** Product of sums:

 e.g., \((p + q)(r + s)(a + c)\).

- **Any Boolean expression in DNF can be converted to an equivalent CNF and vice versa.**

 e.g., CNF: \((p + \lnot r)(p + s)(q + \lnot r)(q + s)\) is equivalent to

 DNF: \((pq + \lnot rs)\)

Boolean Expressions (3)

- **Mutually singular:** Boolean expressions \(e_1\) and \(e_2\) are mutually singular when they *do not share any literal*
Boolean Expressions: Syntax Tree Representation

- Abstract syntax tree (AST) for
 \[(a + b) \land \neg p\]
- Internal nodes are labeled by boolean and relational operators

\[
\begin{align*}
\text{Root node (AND-node)} & \quad (a + b) \quad c \quad \neg p \\
\text{Leaf nodes} &
\end{align*}
\]

Fault Model for Predicate Testing

- What kind of faults are we targeting when testing for the correct implementation of predicates?

- Suppose that the specification of a software module requires that an action be performed when the condition \((a \prec b) \lor (c > d) \land e\) is true.

- Here \(a, b, c,\) and \(d\) are integer variables and \(e\) is a Boolean variable.
Boolean Operator Faults

- Correct predicate: $(a < b) \lor (c > d) \land e$

 $(a < b) \land (c > d) \land e$ Incorrect Boolean operator
 $(a < b) \lor \neg(c > d) \land e$ Incorrect negation operator
 $(a < b) \land (c > d) \lor e$ Incorrect Boolean operators
 $(a < b) \lor (c > d) \land x$ Incorrect Boolean variable

Relational Operator Faults

- Correct predicate: $(a < b) \lor (c > d) \land e$

 $(a = b) \lor (c > d) \land e$ Incorrect relational operator
 $(a = b) \lor (c \leq d) \land e$ Two relational operator faults
 $(a = b) \lor (c > d) \lor e$ Incorrect relational and Boolean operators
Missing or Extra Boolean Variable Faults

- Correct predicate: $a \lor b$
- Missing Boolean variable fault: a
- Extra Boolean variable fault: $a \lor b \land c$

Goal of Predicate Testing (1)

- Given a correct predicate p_c, the goal of predicate testing is to generate a test set T such that there is at least one test case $t \in T$ for which p_c and its faulty version p_i evaluate to different truth values (i.e., $p_c = \text{true}$ and $p_i = \text{false}$ or vice versa)
Goal of Predicate Testing (2)

- As an example, suppose that $p_c: a < b + c$ and $p_i: a > b + c$
 Consider a test set $T = \{t_1, t_2\}$ where
 $t_1: <a = 0, b = 0, c = 0>$ and $t_2: <a = 0, b = 1, c = 1>$

- The fault in p_i is not revealed by t_1 as both p_c and p_i evaluate to false when evaluated against t_1

- However, the fault is revealed by t_2 as p_c evaluates to true and p_i to false when evaluated against t_2

Predicate Constraints: BR symbols

- Consider the following Boolean-Relational set of BR-symbols:
 - $BR=\{t, f, <, =, >\}$

- A BR symbol is a constraint on a Boolean variable or a relational expression

- For example, consider the predicate $E: a < b$ and the constraint “$>$”.
 - A test case that satisfies this constraint for E must cause E to evaluate to false.
Infeasible Constraints

- A constraint C is considered *infeasible* for predicate p_r if there exists no input values for the variables in p_r that satisfy C.

- For example, the constraint $t(\text{true})$ is infeasible for the predicate $(a > b) \land (b > d)$ if it is known that $d > a$.

Predicate Constraints

- Let p_r denote a predicate with n, $n > 0$, \lor and \land operators.

- A *predicate constraint* C for predicate p_r is a sequence of $(n + 1)$ BR symbols, one for each Boolean variable or relational expression in p_r. When clear from context, we refer to “predicate constraint” as simply constraint.

- Test case t satisfies C for predicate p_r if each component of p_r satisfies the corresponding constraint in C when evaluated against t.
 - Constraint C for predicate p_r guides the development of a test case for p_r (i.e., it offers hints on what the values of the variables should be for p_r to satisfy C).
Predicate Constraints: Example

- Consider the predicate $p_r \land [r \leq a \lor a \geq v]$ and a constraint $C: (t, =, >)$
- The following test case **satisfies** C for p_r
 - $<b = true, r = 1, s = 1, u = 1, v = 0>$
- The following test case **does not satisfy** C for p_r
 - $<b = true, r = 1, s = 2, u = 1, v = 2>$

True and False Constraints

- $p_r(C)$ denotes the value of predicate p_r, evaluated using a test case that satisfies C
- C is referred to as a **true constraint** when $p_r(C)$ is true and a **false constraint** otherwise
- A set of constraints S is partitioned into subsets S^t and S^f, respectively, such that for each C in S^t, $p_r(C) = true$, and for any C in S^f, $p_r(C) = false$.
- $S = S^t \cup S^f$
Predicate Testing: Criteria

- Given a predicate \(p_r \), we want to generate a test set \(T \) such that
 - \(T \) is minimal and
 - \(T \) guarantees the detection of the faults (correspond to some fault model) in the implementation of \(p_r \).

- We will discuss three such criteria named
 - BOR (Boolean Operator),
 - BRO (Boolean and Relational Operator), and
 - BRE (Boolean Relational Expression).

Predicate Testing: BOR Testing Criterion

- A test set \(T \) that satisfies the BOR testing criterion for a compound predicate \(p_r \) guarantees the detection of single or multiple Boolean operator faults in the implementation of \(p_r \).

- \(T \) is referred to as a BOR-adequate test set and sometimes written as \(T_{\text{BOR}} \).
Predicate Testing: BRO Testing Criterion

- A test set T that satisfies the BRO testing criterion for a compound predicate p, guarantees the detection of single Boolean operator and relational operator faults in the implementation of p.

- T is referred to as a BRO-adequate test set and sometimes written as T_{BRO}.

Predicate Testing: BRE Testing Criterion

- A test set T that satisfies the BRE testing criterion for a compound predicate p, guarantees the detection of single Boolean operator, relational expression, and arithmetic expression faults in the implementation of p.

- T is referred to as a BRE-adequate test set and sometimes written as T_{BRE}.
Predicate Testing: Guaranteeing Fault Detection

- Let $T_x, x \in \{\text{BOR, BRO, BRE}\}$, be a test set derived from predicate p_x
- Let p_i be another predicate obtained from p_x by injecting single (or multiple) faults of one of three kinds
 - Boolean operator fault
 - relational operator fault, and
 - arithmetic expression fault

- T_x is said to guarantee the detection of faults in p_i if for some $t \in T_x$, $p_i(t) \neq p_j(t)$

Guaranteeing Fault Detection: Example

- Let $p_i = a < b \land c > d$
- Constraint set $S = \{(t, t), (t, f), (f, t)\}$
- Given to you at this moment

- Let $T_{\text{BOR}} = \{t_1, t_2, t_3\}$ is a BOR adequate test set that satisfies S
 - t_1: $a = 1, b = 2, c = 1, d = 0 >$ satisfies (t, t)
 (i.e., $a < b$ is true and $c < d$ is also true)
 - t_2: $a = 1, b = 2, c = 1, d = 2 >$ satisfies (t, f)
 - t_3: $a = 1, b = 0, c = 1, d = 0 >$ satisfies (f, t)

Guaranteeing Fault Detection: In Class Exercise (1)

- Inject single or multiple Boolean operator faults in
 \[p_r; a < b \land c > d \]

 and *show that T guarantees the detection of each fault.*

Guaranteeing Fault Detection: In Class Exercise (2)

- The following table lists \(p_r \) and a total of 7 faulty predicates obtained by inserting single and multiple Boolean operator faults in \(p_r \).

 - Each predicate is evaluated against the three test cases in \(T \)
 - Each faulty predicate evaluates to a value different from that of \(p_r \) for at least one test case in \(T \)

<table>
<thead>
<tr>
<th>Predicate</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a < b \land c > d)</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>Single Boolean operator fault</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (a < b \land c > d)</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>2 (a < b \land \neg c)</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>3 (\neg a < b \land c)</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>Multiple Boolean operator faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (a < b \lor c > d)</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>5 (\neg a < b \lor c)</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>6 (\neg a < b \land \neg c)</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>7 (\neg a < b \lor \neg c)</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Requirements-based Test Generation for Predicate Testing (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)
Guaranteeing Fault Detection: In Class Exercise (3)

- Can we delete any of these three test cases in T and still guarantee the detection of all the Boolean operator faults?

Guaranteeing Fault Detection: In Class Exercise (4)

- Suppose we remove t_2, then the faulty predicate 4 in the previous table cannot be distinguished from p, by tests t_1 and t_3 BRO.

- In fact, if we remove t_2 from T, then T is no longer BOR adequate because the constraint (t, f) is not satisfied.

- We can verify that if any column in the previous table is removed, at least one of the faulty predicates will be left indistinguishable by the tests in the remaining two columns.
Cross & Onto Product

- The **cross product** of two sets A and B is defined as
 \[A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\} \]

- The **onto product** of two sets A and B is defined as
 for finite sets A and B, $A \otimes B$ is a minimal set of pairs (u, v) such that \{$(u, v) \mid u \in A$, $v \in B$, and each element of A appears at least once as u and each element of B appears once as v\}

Set Products: Example (1)

- Let $A = \{t, \leq, >\}$ and $B = \{f, <\}$
 \[A \times B = \{(t, f), (t, <), (\leq, f), (\leq, <), (>\ f), (>\, <)\} \]
 \[A \otimes B = \{(t, f), (\leq, <), (>\, <)\} \]

- Any other possibilities for $A \otimes B$?
Set Products: Example (2)

- Let $A = \{t, =, >\}$ and $B = \{f, <\}$
- Any other possibilities for $A \otimes B$?

 $A \otimes B = \{(t, <), (\neq, f), (>\), <\}\} \leftarrow$ second possibility
 $A \otimes B = \{(t, f), (\neq, <), (>\), f}\} \leftarrow$ third possibility
 $A \otimes B = \{(t, <), (\neq, <), (>\), f}\} \leftarrow$ fourth possibility

Algorithm for Generation of BOR Constraint Sets (1)

- We will use the following notation:
 - p_r is a predicate
 - AST (p_r) is its abstract syntax tree
 - N_1, N_2, \ldots refer to various nodes in the AST (p_r)
 - S_N is the constraint set for node N in the syntax tree for p_r
 - S_N^t is the true constraint set for node N in the syntax tree for p_r
 - S_N^f is the false constraint set for node N in the syntax tree for p_r
 - $S_N = S_N^t \cup S_N^f$
Algorithm for Generation of BOR Constraint Sets (2)

Procedure for generating a minimal BOR-constraint set from an abstract syntax tree of a predicate \(p_i \).

Input: An abstract syntax tree for predicate \(p_i \), denoted by \(\text{AST}(p_i) \). \(p_i \) contains only singular expressions.

Output: BOR-constraint set for \(p_i \) attached to the root node of \(\text{AST}(p_i) \).

Procedure: BOR-CSET

Step 1 Label each leaf node \(N \) of \(\text{AST}(p_i) \) with its constraint set \(S(N) \). For each leaf \(S(N) = \{t, f\} \).

Step 2 Visit each nonleaf node in \(\text{AST}(p_i) \) in a bottom-up manner.
Let \(N_1 \) and \(N_2 \) denote the direct descendants of node \(N \). If \(N \) is an AND or an OR-node. If \(N \) is a NOT-node, then \(N_1 \) is its direct descendant. \(S_{N_1} \) and \(S_{N_2} \) are the BOR-constraint sets for nodes \(N_1 \) and \(N_2 \), respectively. For each nonleaf node \(N \), compute \(S_N \) as follows:

\[S_N = S_{N_1} \oplus S_{N_2} \]

Algorithm for Generation of BOR Constraint Sets (3)

2.1 \(N \) is an OR-node:
\[S_N^o = S_{N_1} \oplus S_{N_2} \]
\[S_N^o = \left(S_{N_1} \times \{ t, f \} \right) \cup \left(\{ t \} \times S_{N_2} \right) \]
where \(t \in S_{N_1} \) and \(f \in S_{N_2} \)

2.2 \(N \) is an AND-node:
\[S_N^o = S_{N_1} \oplus S_{N_2} \]
\[S_N^o = \left(S_{N_1} \times \{ t, f \} \right) \cup \left(\{ t \} \times S_{N_2} \right) \]
where \(t \in S_{N_1} \) and \(f \in S_{N_2} \)

2.3 \(N \) is NOT-node:
\[S_N^o = S_{N_1} \]
\[S_N^o = S_{N_2} \]

Step 3 The constraint set for the root of \(\text{AST}(p_i) \) is the desired BOR-constraint set for \(p_i \).

End of Procedure BOR-CSET
Generation of BOR Constraint Set (1)

- We want to generate T_{BOR} for p_r: $a < b \land c > d$

- First, generate syntax tree of p_r

```
\[
\land
\quad a < b
\quad \land
\quad c > d
\]
```

Generation of the BOR Constraint Set (2)

- Second, label each leaf node with the constraint set \{(t),(f)\}

- We label the nodes as N_1, N_2, and so on for convenience.

```
N_3
  \quad N_1: a < b
  \quad N_2: c > d
\]
```

- Notice that N_1 and N_2 are direct descendents of N_3 which is an AND-node
Generation of the BOR Constraint Set (3)

- Third, compute the constraint set for the next higher node in the syntax tree, in this case N_3.

- For an AND node, the formulae used are the following.

$$S_{N_3} = \overline{S_{N_1}} \otimes \overline{S_{N_2}} = \{(t)\} \otimes \{(t, t)\} = \{(t, t)\}$$

$$S_{N_3} = \{(t, t), (f, t), (t, f)\}$$

$$S_{N_3} = \{(t, t), (f, t), (t, f)\}$$

Generation of T_{BOR}

- As per our objective, we have computed the BOR constraint set for the root node of the AST(p_1). We can now generate a test set using the BOR constraint set associated with the root node.

S_{N_3} contains a sequence of three constraints and hence we get a minimal test set consisting of three test cases. Here is one possible test set.

$$T_{BOR} = \{t_1, t_2, t_3\}$$

$$t_1 = \langle a = 1, b = 2, c = 4, d = 5 \rangle$$
$$t_2 = \langle a = 1, b = 0, c = 4, d = 5 \rangle$$
$$t_3 = \langle a = 1, b = 2, c = 3, d = 2 \rangle$$
Another Example for T_{BOR} (1)

• Generate the BOR-constraint sets for the predicate

$$(a + b < c \land \neg p \lor (r > s)) \quad (1)$$

Another Example for T_{BOR} (2)

• The abstract syntax tree for

$$(a + b < c \land \neg p \lor (r > s))$$
Recall that a test set adequate with respect to a BRO constraint set for predicate \(p \) guarantees the detection of all combinations of single Boolean operator and relational operator faults.

The BRO constraint set \(S \) for relational expression \(e_1 \ relop \ e_2 \)

\[
S = \{ (>), (=), (<) \}
\]

The separation of \(S \) into its true \((S^t) \) and false \((S^f) \) components depends in \(relop \)

- \(relop: > \ S^t = \{ (>) \} \quad S^f = \{ (=), (<) \} \)
- \(relop: \geq \ S^t = \{ (>), (=) \} \quad S^f = \{ (<) \} \)
- \(relop: = \ S^t = \{ (=) \} \quad S^f = \{ (<), (>), (=) \} \)
- \(relop: < \ S^t = \{ (<) \} \quad S^f = \{ (=), (>), (=) \} \)
- \(relop: \leq \ S^t = \{ (<), (=) \} \quad S^f = \{ (=), (>), (=) \} \)

Note: \(t_n \) denotes an element of \(S^t_N \)

\(f_n \) denotes an element of \(S^f_N \)
Algorithm for Generation of BRO Constraint Sets

procedure for generating a minimal BRO-constraint set from abstract syntax tree of a predicate \(p \).

Input: An abstract syntax tree for predicate \(p \), denoted by \(AST(p) \).

Output: BRO-constraint set for \(p \), attached to the root node of \(AST(p) \).

Procedure: BRO-CSSET

Step 1: Label each leaf node \(N \) of \(AST(p) \) with its constraint set \(S(N) \). For each leaf node that represents a boolean variable, \(S_{b} = \{ \leq, \geq \} \). For each leaf node that is a relational expression, \(S_{r} = \{ \neq, <, >, = \} \).

Step 2: Visit each nonleaf node in \(AST(p) \) in a bottom up manner.

- Let \(N_{4} \) and \(N_{5} \) denote the direct descendants of node \(N \). If \(N \) is an AND- or an OR-node, if \(N \) is a NOT-node, then \(N_{4} \) and \(N_{5} \) are the BRO-constraint sets for nodes \(N_{4} \) and \(N_{5} \), respectively. For each nonleaf node \(\), compute \(S_{b} \) as per Steps 2.1, 2.2, and 2.3 in Procedure: BRO-CSSET.

Step 3: The constraint set for the root of \(AST(p) \) is the desired final constraint set for \(p \).

end of Procedure: BRO-CSSET

BRO Constraint Set: Example (1)

- \(p_{1} : (a + b < c) \land p \lor (r > s) \)

- Step 1: Construct the AST for the given predicate

\[\begin{align*}
N_{0} & : \land \\
N_{4} & : (a + b < c) \\
N_{5} & : r > s \\
N_{1} & : a + b < c \\
N_{2} & : p \\
N_{3} & : p \lor (r > s)
\end{align*} \]
BRO Constraint Set: Example (2)

- Step 2: Label each leaf node with its constraint set S

![Diagram of a tree with constraints]

N_1 with $a + b < c$
N_2 with $r > s$
N_3 with True constraint $\{>\}$
$
N_6$ with True constraint $\{<\}$
N_5 with False constraint $\{<, =\}$

BRO Constraint Set: Example (3)

- Step 2: Traverse the tree and compute constraint set for each internal node

$S'_{N_3} = S_{N_2}^f = \{(f)\}$

$S'_{N_3} = S_{N_2}^t = \{(t)\}$

$S'_{N_4} = S_{N_3}^t \otimes S_{N_3}^f = [(<)] \otimes [(f)] = [(<, f)]$

$S'_{N_4} = (S_{N_1}^t \times \{(t_{N_2})\}) \cup (\{(t_{N_2})\} \times S_{N_3}^f)$

$= ([(>]), (=)] \times [(f)]) \cup ([(<), (=)] \times [(t)])$

$= [(>), (=), (f)] \cup [(<), (t)]$

$= [(>), (=), (f), (<), (t)]$
BRO Constraint Set: Example (4)

True constraint \{(<, t)\}
False constraint \{(>, f), (=, f), (<, t)\}

![Diagram of the BRO constraint set example](image)

BRO Constraint Set: Example (5)

- Next compute the constraint set for the root node (this is an OR-node)

\[
S'_{N_6} = S'_{N_4} \otimes S'_{N_5} \\
= \{(>, f), (=, f), (<, t)\} \otimes \{ (=), (<)\} \\
= \{ (>), (>, f), (=), (>, t), (<, t)\}
\]

\[
S'_{N_6} = (S'_{N_4} \times \{ f_{N_5} \}) \cup (\{ f_{N_5} \} \times S'_{N_4}) \\
= \{((<, f) \times \{ (=)\}\) \cup (\{ (>), f\} \times \{ (>))\} \\
= \{ (<, f), (=), (>), f\}
\]
BRO Constraint Set: Example (6)

Constraint set for \(p_r \): \((a + b < c) \land \neg p \lor (r > s)\)

- True constraint \{(<, f, =), (>), (>), (>)\}
- False constraint \{(<, f, =), (=, f, <), (<, t, =), (<, f, =), (>)\}

BRO Constraint Set: In-Class Exercise

- Given the constraint set for \(p_r \): \((a + b < c) \land \neg p \lor (r > s)\), construct \(T_{BRO} \)

\[\{(>, f, =), (=, f, <), (<, t, =), (<, f, =), (>), (>), (>)\} \]

<table>
<thead>
<tr>
<th>(a + b < c)</th>
<th>(p)</th>
<th>(r > s)</th>
<th>Test case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>></td>
<td>(f)</td>
<td>(< a = 1, b = 1, c = 1, p = \text{false}, r = 1, s = 1 >)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>=</td>
<td>(f)</td>
<td>(< a = 1, b = 0, c = 1, p = \text{false}, r = 1, s = 2 >)</td>
</tr>
<tr>
<td>(t_3)</td>
<td><</td>
<td>(t)</td>
<td>(< a = 1, b = 1, c = 3, p = \text{true}, r = 1, s = 1 >)</td>
</tr>
<tr>
<td>(t_4)</td>
<td><</td>
<td>(f)</td>
<td>(< a = 0, b = 2, c = 3, p = \text{false}, r = 0, s = 0 >)</td>
</tr>
<tr>
<td>(t_5)</td>
<td>></td>
<td>(f)</td>
<td>(< a = 1, b = 1, c = 0, p = \text{false}, r = 2, s = 0 >)</td>
</tr>
</tbody>
</table>
We now show how to generate BRE constraints that lead to test cases which guarantee the detection of a single occurrence of Boolean operator, relation operator, arithmetic expression, or combination fault in a predicate.

- The BRE constraint set for a Boolean variable remains \{t, f\} as with the BOR and BRO constraint sets.

- The BRE constraint set for a relational expression is \{(+\&\&), (=), (−\&\&)\} where \(\varepsilon > 0\).

The BRE constraint set \(S\) for a relational expression \(e_1 \text{ relop } e_2\) is separated into subsets \(S^t\) and \(S^f\) based on the following relations:

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Satisfying condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>+&&</td>
<td>(0 < e_1 - e_2 \leq +\varepsilon)</td>
</tr>
<tr>
<td>−&&</td>
<td>(−\varepsilon \leq e_1 - e_2 < 0)</td>
</tr>
</tbody>
</table>

Based on the conditions listed above, we can now separate the BRE constraint \(S\) into its true and false components as follows:

- \(\text{relop} : >\) \(S^t = \{(+\varepsilon)\}\) \(S^f = \{(=), (+\varepsilon)\}\)
- \(\text{relop} : \geq\) \(S^t = \{(=), (−\varepsilon)\}\) \(S^f = \{(−\varepsilon)\}\)
- \(\text{relop} : =\) \(S^t = \{(=)\}\) \(S^f = \{(+\varepsilon), (−\varepsilon)\}\)
- \(\text{relop} : <\) \(S^t = \{(−\varepsilon)\}\) \(S^f = \{(=), (−\varepsilon), (+\varepsilon)\}\)
- \(\text{relop} : \leq\) \(S^t = \{(−\varepsilon), (=)\}\) \(S^f = \{(+\varepsilon)\}\)
Algorithm for Generation of BRE Constraint Sets (1)

- The procedure to generate a minimal BRE-constraint set is similar to that for BRO and BOR. The only difference lies in the construction of the constraint sets for the leaves.

Algorithm for Generation of BRE Constraint Sets (2)

Procedure for generating a minimal BRE-constraint set from an abstract syntax tree of a predicate p.

Input: An abstract syntax tree for predicate p, denoted by $\text{AST}(p)$. p contains only singular expressions.

Output: BRE-constraint set for p, attached to the root node of $\text{AST}(p)$.

Procedure: BRE-CSST

Step 1: Label each leaf node N of $\text{AST}(p)$ with its constraint set $S(N)$. For each leaf node that represents a Boolean variable, $S_N = \{ \top, \bot \}$. For each leaf node that is a relational expression, $S_N = \{ \langle \cdot \cdot \rangle, \langle \cdot \rangle, \langle \cdot \cdot \rangle \}$.

Step 2: Visit each nonleaf node in $\text{AST}(p)$ in a bottom up manner. Let N_1 and N_2 denote the direct descendants of node N, if N is an AND/OR node. If N is a NOT node, then N_1 is its direct descendant. S_{N_1} and S_{N_2} are the BRE constraint sets for nodes N_1 and N_2, respectively. For each nonleaf node N, compute S_N as in Steps 1.1, 1.2, and 1.3 in Procedure BRO-CSST.

Step 3: The constraint set for the root of $\text{AST}(p)$ is the desired BRE-constraint set for p.

End of Procedure BRE-CSST.
BRE Constraint Set: Example (1)

- Generate the constraint set for the predicate \(p; (a + b < c) \land \neg \neg p \lor (r > s) \)

\[
\begin{align*}
N_1 & \quad a + b < c \\
N_2 & \quad p \\
N_3 & \quad r > s \\
N_4 & \quad (a + b < c) \\
N_5 & \quad (r > s) \\
N_6 & \quad 1
\end{align*}
\]

BRE Constraint Set: Example (2)

BRE constraint set

\[
N_x \quad \{[\sigma, f, \sigma], \langle e, f, \sigma \rangle, \langle e, f, \sigma \rangle, \langle e, f, \sigma \rangle, \langle e, f, e \rangle, \langle e, f, e \rangle \}
\]

- Generate the constraint set for the predicate \(p; (a + b < c) \land \neg \neg p \lor (r > s) \)

\[
\begin{align*}
N_1 & \quad a + b < c \\
N_2 & \quad p \\
N_3 & \quad r > s \\
N_4 & \quad (a + b < c) \\
N_5 & \quad (r > s) \\
N_6 & \quad 1
\end{align*}
\]

BRO constraint set

\[
\begin{align*}
N_x & \quad \{[\sigma, f, \sigma], \langle e, f, \sigma \rangle, \langle e, f, \sigma \rangle, \langle e, f, \sigma \rangle, \langle e, f, e \rangle, \langle e, f, e \rangle \}
\]

\[
\begin{align*}
N_1 & \quad a + b < c \\
N_2 & \quad p \\
N_3 & \quad r > s \\
N_4 & \quad (a + b < c) \\
N_5 & \quad (r > s) \\
N_6 & \quad 1
\end{align*}
\]
BRE Constraint Set: Example (3)

- A sample test set \((T_{BRE}) \) that satisfies the BRE constraints \((\varepsilon = 1) \)

<table>
<thead>
<tr>
<th>(a + b < c)</th>
<th>(p)</th>
<th>(r > s)</th>
<th>Test case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>+(c)</td>
<td>+(f)</td>
<td>(< a = 1, b = 1, c = 1, p = false, r = 1, s = 1 >)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>=</td>
<td>+(c)</td>
<td>(< a = 1, b = 0, c = 1, p = false, r = 1, s = 2 >)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>-(c)</td>
<td>+(f)</td>
<td>(< a = 0, b = 1, c = 3, p = false, r = 0, s = 0 >)</td>
</tr>
<tr>
<td>(t_4)</td>
<td>+(c)</td>
<td>+(c)</td>
<td>(< a = 1, b = 1, c = 1, p = false, r = 1, s = 0 >)</td>
</tr>
</tbody>
</table>

- A sample test set \((T_{BRO}) \) that satisfies the BRO constraints

<table>
<thead>
<tr>
<th>(a + b < c)</th>
<th>(p)</th>
<th>(r > s)</th>
<th>Test case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>+(c)</td>
<td>+(f)</td>
<td>(< a = 1, b = 1, c = 1, p = false, r = 1, s = 1 >)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>=</td>
<td>+(c)</td>
<td>(< a = 1, b = 0, c = 1, p = false, r = 1, s = 2 >)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>-(c)</td>
<td>+(f)</td>
<td>(< a = 0, b = 1, c = 3, p = false, r = 0, s = 0 >)</td>
</tr>
<tr>
<td>(t_4)</td>
<td>+(c)</td>
<td>+(c)</td>
<td>(< a = 1, b = 1, c = 1, p = false, r = 1, s = 0 >)</td>
</tr>
</tbody>
</table>

Singular Boolean Expressions

- **Boolean expression:** one or more Boolean variables joined by \(bop \)
 - Example \((a \land b \lor \lnot c)\), where \(a \), \(b \), and \(c \) are also known as **literals**

- **Singular Boolean expression:** When each literal appears only once
 - Example \((a \land b \lor \lnot c)\)
Mutually Singular Boolean Expressions

- **Mutually singular:** Boolean expressions e_1 and e_2 are mutually singular when they do not share any literal.

- Expression e_i is considered a *singular component of E* if and only if e_i is singular and is mutually singular with each of the other elements of E.

- Expression e_i is considered a *non-singular component of E* if and only if it is non-singular and is mutually singular with each of the remaining elements of E.

BOR Constraints for Non-Singular Expressions

- Test generation procedures described so far are for singular predicates. Recall that a singular predicate contains only one occurrence of each variable.

- We will now learn how to generate BOR constraints for non-singular predicates.

- First, let us look at some non-singular expressions, their respective disjunctive normal forms (DNF), and their mutually singular components.
Non-Singular Expressions and DNF: Examples

<table>
<thead>
<tr>
<th>Predicate (p)</th>
<th>DNF</th>
<th>Mutually singular components in (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab(b + c))</td>
<td>(abb + abc)</td>
<td>(a; b(b + c))</td>
</tr>
<tr>
<td>(a(bc + bd))</td>
<td>(abc + abd)</td>
<td>(a; (bc + bd))</td>
</tr>
<tr>
<td>(a(bc + !b + de))</td>
<td>(abc + a!b + ade)</td>
<td>(a; bc + !b + de)</td>
</tr>
</tbody>
</table>

Generating BOR Constraints for Non-Singular Expressions

- We proceed in two steps
 - First we will examine the **Meaning Impact (MI)** procedure for generating a minimal set of constraints from a possibly non-singular predicate
 - Next, we will examine the procedure to generate BOR constraint set for a non-singular predicate
Meaning Impact (MI) Procedure (1)

Input: A Boolean expression $E = e_1 + e_2 + \ldots e_n$ in minimal disjunctive normal form containing n terms e_i, $1 \leq i \leq n$ contains $l > 0$ literals.

Output: A set of constraints S_E that guarantees the detection of missing or extra NOT operator fault in a faulty version of E.

Procedure: MI-CSET

Step 1: For each term e_i, $1 \leq i \leq n$, construct T_i as the set of constraints that make e_i true.

Step 2: Let $TS_i = T_i - \bigcup_{j=1,j \neq i}^n T_j$. Note that for $i \neq j$, $TS_i \cap TS_j = \emptyset$.

Step 3: Construct S_E^x by including one constraint from each TS_i, $1 \leq i \leq n$. Note that for each constraint $e \in S_E^x$, $p(e) = true$.

Meaning Impact (MI) Procedure (2)

Step 4: Let e'_j denote the term obtained by complementing the jth literal in term e_i, for $1 \leq i \leq n$ and $1 \leq j \leq l$. We count the literals in a term from left to right, the leftmost literal being the first. Construct $F_{e'_j}$ as the set of constraints that make e'_j true.

Step 5: Let $FS_E = F_{e'_1} - \bigcup_{i=1}^n T_i$. Thus, for any constraint $e \in FS_E$, $p(e) = false$.

Step 6: Construct S_E^f that is minimal and covers each FS_E at least once.

Step 7: Construct the desired constraint set for F as $S_E = S_E^x \cup S_E^f$.

End of Procedure MI-CSET
MI Procedure: Example (1)

- Consider the **non-singular** predicate: \(a(bc + bd) \)
- Its DNF equivalent is \(E = abc + abd \)
- Note that \(a, b, c, \) and \(d \) are Boolean variables and also referred to as literals
 - Each literal represents a condition
 - For example, \(a \) could represent \(r \leq s \)
- Recall that + is the Boolean OR operator, ! is the Boolean NOT operator, and as per common convention we have omitted the Boolean AND operator. For example \(bc \) is the same as \(b \land c \)

MI Procedure: Example (2)

- Step 0: Identify the DNF equivalent of \(E \) as \(e_1 + e_2 \), where \(e_1 = abc \) and \(e_2 = a!bd \)

- Step 1: Construct a constraint set \(T_{e_1} \) for \(e_1 \) that makes \(e_1 \) true.

 Similarly construct \(T_{e_2} \) for \(e_2 \) that makes \(e_2 \) true

 \[T_{e_1} = \{ (t, t, t, 0), (t, t, t, 1) \} \]

 \[T_{e_2} = \{ (t, 0, 1, t), (t, 0, 0, t) \} \]

- Note that the four \(t \)'s in the first element of \(T_{e_1} \) denote the values of the Boolean variables \(a, b, c, \) and \(d \), respectively. The second element, and others, are to be interpreted similarly.
MI Procedure: Example (3)

- **Step 2:** From each T_{e_j}, remove the constraints that are in any other T_{e_j}.

 This gives us TS_{e_1} and TS_{e_2}.

 Note that this step will lead $TS_{e_1} \cap TS_{e_2} = \emptyset$.

 - There are no common constraints between T_{e_1} and T_{e_2} in our example.

 Hence we get

 $TS_{e_1} = \{ (t, t, t, t), (t, t, t, f) \}$
 $TS_{e_2} = \{ (t, f, t, t), (t, f, f, t) \}$

MI Procedure: Example (4)

- **Step 3:** Construct $S_{E}^{'}$ by selecting one element from each TS.

 - In our case, selecting one test each from TS_{e_1} and TS_{e_2}, we obtain a minimal set of tests that make E true and cover each term of E as follows

 $S_{E}^{'} = \{ (t, t, t, t), (t, f, f, t) \}$

 - Note that
 - There exist four possible $S_{E}^{'}$.
 - For each constraint x in $S_{E}^{'}$ we get $E(x) = true$.
MI Procedure: Example (5)

- Step 4: For each term in E, obtain terms by complementing each literal, one at a time

 $e^1_1 = \overline{a}bc$ \hspace{1cm} $e^2_1 = a\overline{b}c$ \hspace{1cm} $e^3_1 = ab\overline{c}$

 $e^1_2 = \overline{a}bd$ \hspace{1cm} $e^2_2 = a\overline{b}d$ \hspace{1cm} $e^3_2 = a!b!d$

- From each term e above, derive constraints F_e that make e true. We get the following six sets

MI Procedure: Example (6)

- $F^1_{t_1} = \{(f, t, t, t), (f, t, t, f)\}$
- $F^2_{t_1} = \{(t, f, t, t), (t, f, t, f)\}$
- $F^3_{t_1} = \{(t, t, f, t), (t, t, t, f)\}$
- $F^4_{t_2} = \{(f, f, t, t), (f, f, f, f)\}$
- $F^5_{t_2} = \{(t, t, t, t), (t, t, f, f)\}$
- $F^6_{t_2} = \{(t, f, t, f), (t, f, f, f)\}$
MI Procedure: Example (7)

- **Step 5:** Now construct FS_e by removing from F_e any constraint that appeared in any of the sets T_e constructed earlier.

 \[
 FS_e^1 = F_e^1 \\
 FS_e^2 = \{(t, f, t, f)\} \\
 FS_e^3 = F_e^3 \\
 \]

 Constraints common with T_e^1 and T_e^2 are removed.

 \[
 FS_e^4 = F_e^4 \\
 FS_e^5 = \{(t, t, f, t)\} \\
 FS_e^6 = F_e^6
 \]

MI Procedure: Example (8)

- **Step 6:** Now construct S'_E by selecting one constraint from each FS_e

 \[
 S'_E = \{(f, t, t, f), (t, f, t, f), (t, t, f, t), (f, f, t, t)\}
 \]

- **Step 7:** Now construct $S_E = S'_E \cup S'_E$

 \[
 S_E = \{(t, t, t, f), (t, f, f, t), \{f, t, t, f\}, (t, f, t, f), (t, t, f, t), (f, f, t, t)\}
 \]

- **Note:** Each constraint in S'_E makes E true and each constraint in S'_E makes E false.
BOR-MI-CSET Procedure (1)

- The BOR-MI-CSET procedure takes a possibly non-singular expression E as input and generates a constraint set that guarantees the detection of Boolean operator faults in the implementation of E.
- The BOR-MI-CSET procedure using the MI procedure described earlier.

BOR-MI-CSET Procedure (2)

Procedure for generating a minimal constraint set for a predicate possibly containing non-singular expressions.

Input: A Boolean expression E.

Output: A set of constraints S_C that guarantees the detection of Boolean operator faults in E.

Procedure: BOR-MI-CSET

1. **Step 1** Partition E into a set of mutually singular components, $E = \{E_1, E_2, \ldots, E_n\}$.
2. **Step 2** Generate the BOR-constraint set for each singular component in E using the BOR-CSET procedure.
3. **Step 3** Generate the BOR constraint set for each non-singular component in E using the MI-CSET procedure.
4. **Step 4** Combine the constraints generated in the previous two steps using Step 2 from the BOR-CSET procedure to obtain the constraint set for E.

End of Procedure BOR-MI-CSET.
BOR-MI-CSET: Example (1)

- Consider a non-singular Boolean expression: \(E = a(bc + !bd) \)
- Mutually singular components of \(E \)

 \[
 \begin{align*}
 e_1 &= a & \text{ singular} \\
 e_2 &= bc + !bd & \text{ non-singular}
 \end{align*}
 \]
- We use the BOR-CSET procedure to generate the constraint set for \(e_1 \) (singular component) and MI-CSET procedure for \(e_2 \) (non-singular component)

BOR-MI-CSET: Example (2)

- For component \(e_1 \) we get

 \[
 S^t_{e_1} = \{ t \}, \ S^f_{e_1} = \{ f \}
 \]
- Recall that \(S^t_{e_1} \) is true constraint set for \(e_1 \) and \(S^f_{e_1} \) is false constraint set for \(e_1 \)
BOR-MI-CSET: Example (3)

- Component e_2 is a DNF expression. We can write $e_2 = u + v$ where $u = \{t\}$ and $v = \{f\}$.
- Let us now apply the MI-CSET procedure to obtain the BOR constraint set for e_2.
- As per Step 1 of the MI-CSET procedure we obtain

 $T_u = \{(t, t, 1), (t, t, 2)\}$
 $T_v = \{(f, 0, 1), (f, 0, 2)\}$

BOR-MI-CSET: Example (4)

- Applying Steps 2 and 3 to T_u and T_v we obtain

 $T_{S_u} = T_u = \{(t, t, 1), (t, t, 2)\}$
 $T_{S_v} = T_v = \{(f, 0, 1), (f, 0, 2)\}$
 $S_{e_2} = \{(t, t, f), (f, t, t)\}$

- Next we apply Step 4 to u and v. We obtain the following complemented expressions from u and v.

 Note that $u = \{t\}$ and $v = \{f\}$

 $u_1 = \{\overline{1}\} \quad u_2 = \{\overline{2}\}$
 $v_1 = \{\overline{M}\} \quad v_2 = \{\overline{L}\}$
BOR-MI-CSET: Example (5)

- Continuing with Step 4 we obtain
 \[
 F_{a_1} = \{(f, t, t), (f, t, f)\} \quad F_{a_2} = \{(t, f, t), (t, f, f)\}
 \]
 \[
 F_{v_1} = \{(t, t, t), (t, t, f)\} \quad F_{v_2} = \{(f, f, t), (f, f, f)\}
 \]

- Next we apply Step 5 to the \(F \) constraint sets to obtain
 \[
 FS_{a_1} = \{(f, t, f)\} \quad FS_{a_2} = \{(t, f, t), (t, f, f)\}
 \]
 \[
 FS_{v_1} = \{(t, f, t)\} \quad FS_{v_2} = \{(f, t, f), (f, f, f)\}
 \]

BOR-MI-CSET: Example (6)

- Applying Step 6 to the \(FS \) sets leads to the following
 \[
 S'_{e_2} = \{(f, t, f), (t, f, t)\}
 \]

- Combining the true and false constraint sets for \(e_2 \) we get
 \[
 S_{e_2} = \{(t, t, f), (f, t, f), (f, t, f), (t, f, t)\}
 \]
BOR-MI-CSET: Example (7)

- Summary

\[S_{t_{N_1}} = \{(0)\} \quad S_{f_{N_1}} = \{(f)\} \quad \text{from BOR-CSET procedure} \]
\[S_{t_{N_2}} = \{(t, t, f), (f, t, t)\} \quad S_{f_{N_2}} = \{(f, t, f), (t, f, t)\} \quad \text{from MI-CSET procedure} \]

- We now apply Step 2 of the BOR-CSET procedure to obtain the constraint set for the entire expression \(E \)

BOR-MI-CSET: Example (8)

Obtained by applying Step 2 of BOR-CSET to an AND node

\[S'_{N_3} = S'_{N_1} \otimes S'_{N_2} \]
\[S'_{N_3} = (S'_{N_1} \times \{t_2\}) \cup (\{t_1\} \times S'_{N_2}) \]

- True constraint: \(\{(t, t, t, f), (t, f, t, t)\} \)
- False constraint: \(\{(f, t, f), (t, f, f), (t, t, f, t)\} \)

Apply MI-CSET

- True constraint: \(\{(t, t, f), (f, t, t)\} \)
- False constraint: \(\{(f, t, f), (f, f, t)\} \)
Summary (1)

- Most requirements contain conditions under which functions are to be executed. Predicate testing procedures covered are excellent means to generate tests to ensure that each condition is tested adequately.

Summary (2)

- Usually one would combine equivalence partitioning, boundary value analysis, and predicate testing procedures to generate tests for a requirement of the following type:

\[
\text{if condition then action 1, action 2, … action n;}
\]

- apply predicate testing or BVA
- apply equivalence partitioning, BVA, etc., and predicate testing if there are nested conditions