Controlflow-based Coverage Criteria

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas
ewong@utdallas.edu
http://www.utdallas.edu/~ewong
Speaker Biographical Sketch

- Professor & Director of International Outreach
 Department of Computer Science
 University of Texas at Dallas

- Guest Researcher
 Computer Security Division
 National Institute of Standards and Technology (NIST)

- Vice President, IEEE Reliability Society

- Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

- Principal Investigator, NSF TUES (Transforming Undergraduate Education in
 Science, Technology, Engineering and Mathematics) Project
 – *Incorporating Software Testing into Multiple Computer Science and Software
 Engineering Undergraduate Courses*

- Founder & Steering Committee co-Chair for the SERE conference
 (*IEEE International Conference on Software Security and Reliability*)
 (http://paris.utdallas.edu/sere13)
Outline

- Block/Statement Coverage
- Decision Coverage
- Condition Coverage
- Multiple Condition Coverage
Statement and Block Coverage
Declarations and Basic Blocks

- Any program written in a procedural language consists of a sequence of statements. Some of these statements are declarative, such as the `#define` and `int` statements in C, while others are executable, such as the `assignment`, `if`, and `while` statements in C and Java.

- Recall that a basic block is a sequence of consecutive statements that has exactly one entry point and one exit point.
 - For any procedural language, adequacy with respect to the statement coverage and block coverage criteria are defined next.

- Notation: \((P, R)\) denotes program \(P\) subject to requirement \(R\).
Statement Coverage

- The statement coverage of T with respect to (P, R) is computed as $S_c / (S_e - S_i)$, where S_c is the number of statements covered, S_i is the number of unreachable statements, and S_e is the total number of executable statements in the program, i.e., the size of the coverage domain.

- T is considered adequate with respect to the statement coverage criterion if the statement coverage of T with respect to (P, R) is 1.
Block Coverage

- The block coverage of T with respect to (P, R) is computed as $B_c / (B_e - B_i)$, where B_c is the number of blocks covered, B_i is the number of unreachable blocks, and B_e is the total number of executable blocks in the program, i.e., the size of the block coverage domain.

- T is considered adequate with respect to the block coverage criterion if the statement coverage of T with respect to (P, R) is 1.
Example: Statement Coverage

- Coverage domain: \(S_e = \{4, 5, 6, 7, 8, 9, 12, 13\} \) Let \(T_1 = \{t_1: x = -1, \ y = -1 >, \ t_2: x = 1, \ y = 1 >\} \)

- Statements covered:
 - \(t_1 \): 4, 5, 6, 7, 8 and 13
 - \(t_2 \): 4, 5, 6, 12, and 13

- \(S_c = 7, \ S_i = 1, \ S_e = 8 \). The statement coverage for \(T_1 \) is \(7 / (8 - 1) = 1 \). Hence we conclude that \(T_1 \) is adequate for \((P, R)\) with respect to the statement coverage criterion. Note: 9 is unreachable.

```c
begin
  int X, Y;
  int Z;
  input \langle X, Y \rangle;
  Z = 0;
  if (X < 0 and Y < 0) {
    Z = X*Y;
    if (Y >= 0)
      Z = Z + 1;
  }
  else
    Z = X*X*X;
  output \langle Z \rangle;
end
```
Example: Block Coverage (1)

- Coverage domain: $B_e = \{1, 2, 3, 4, 5\}$

 \[T_2 = \{ \begin{array}{l} t_1 : \ < x = -1 \quad y = -1 > \\ t_2 : \ < x = -3 \quad y = -1 > \\ t_3 : \ < x = -1 \quad y = -3 > \end{array} \} \]

- Blocks covered:
 - t_1: Blocks 1, 2, 5
 - t_2, t_3: same coverage as of t_1.

- $B_e = 5$, $B_c = 3$, $B_i = 1$.
 - Block coverage for $T_2 = 3 / (5 - 1) = 0.75$.
 - Hence T_2 is not adequate for (P, R) with respect to the block coverage criterion.

Controlflow-based Coverage Criteria (© 2012 Professor W. Eric Wong, The University of Texas at Dallas)
Example: Block Coverage (2)

- T_1 is adequate w.r.t. block coverage criterion. **Verify this statement!**
- Also, if test t_2 in T_1 is added to T_2, we obtain a test set adequate with respect to the block coverage criterion for the program under consideration.
 - **Verify this statement!**

![Flowchart](image-url)
Coverage Values

- The formulae given for computing various types of code coverage yield a coverage value between 0 and 1. However, while specifying a coverage value, one might instead use percentages. For example, a statement coverage of 0.65 is the same as 65% statement coverage.
Condition and Decision Coverage
Conditions

• Any expression that evaluates to true or false constitutes a condition. Such an expression is also known as a predicate.

• Given that A, B, and D are Boolean variables, and x and y are integers, A, x > y, A OR B, A AND (x < y), (A AND B) are sample conditions.

• Note that in programming language C, x and x + y are valid conditions, and the constants 1 and 0 correspond to, respectively, true and false.
Simple and Compound Conditions

- A *simple condition does not use any Boolean operators except for the not operator*. It is made up of variables and *at most one* relational operator from the set \{<, ≤, >, ≥, ==, ≠\}.

- *Simple conditions* are also referred to as *atomic* or *elementary* conditions because they cannot be parsed any further into two or more conditions.

- A *compound condition* is made up of two or more simple conditions joined by one or more Boolean operators.
Conditions as Decisions

- Any condition can serve as a decision in an appropriate context within a program. Most high level languages provide if, while, and switch statements to serve as contexts for decisions.

```
if (A)
    task if A is true;
else
    task if A is false;

while (A)
    task while A is true;

switch (e)
    task for e=e1
    task for e=e2
    task for e=en
else
    default task
```

(a) (b) (c)
Outcomes of a Decision

• A decision can have three possible outcomes: true, false, and undefined.

• In some cases the evaluation of a condition might fail in which case the corresponding decision's outcome is undefined.
Undefined Condition

- The condition inside the if statement on line 6 will remain undefined because the loop at lines 2-4 will never end. Thus the decision on line 6 evaluates to undefined.

```c
bool foo(int a_parameter){
  while (true) { // An infinite loop.
    a_parameter = 0;
  }
} // End of function foo().

if(x < y and foo(y)){ // foo() does not terminate.
  compute(x,y);
}
```
Coupled Conditions

• How many simple conditions are there in the compound condition: $D = (A \text{ AND } B) \text{ OR } (C \text{ AND } A)$? *The first occurrence of A is said to be coupled to its second occurrence.*

• Does D contain *three or four simple conditions*? Both answers are correct depending on one's point of view. Indeed, there are three distinct conditions A, B, and C. The answer is four when one is interested in the number of occurrences of simple conditions in a compound condition.
Conditions within Assignments

• Strictly speaking, a condition becomes a decision only when it is used in the appropriate context such as within an if statement.

• At line 4, \(x < y \) does not constitute a decision and neither does \(A \times B \).
 1. \(A = x < y \); // A simple condition assigned to a Boolean variable A.
 2. \(X = P \) or \(Q \); // A compound condition assigned to a Boolean variable x
 3. \(x = y + z \times s \); if(\(x \))...// The condition will be true if \(x = 1 \) and false otherwise
 4. \(A = x < y \); \(x = A \times B \); // A is used in a subsequent expression for x but not as a decision
Decision Coverage

- A decision is considered **covered** if the flow of control has been diverted to **all possible destinations** that correspond to this decision, i.e., **all outcomes of the decision have been taken**.

- This implies that, for example, the expression in the **if** or a **while** statement has evaluated to **true** in some execution of the program under test and to **false** in the same or another execution.
Decision Coverage: Switch Statement

- Decision implied by the *switch statement* is considered covered if during one or more executions of the program under test the flow of control has been *diverted to all possible destinations*.
Decision Coverage: Example (1)

• Requirement:
 – The following code inputs an integer x, and if $x < 0$, transforms it into a positive value before invoking foo-1 to compute the output z.
 – It is supposed to compute z using foo-2 when $x \geq 0$.
 – It has a bug.

```plaintext
1    begin
2    int x, z;
3    input (x);
4    if(x<0)
5        x = -x;
6    z = foo-1(x);
7    output(z);
8    end
```

There should have been an `else` clause before this statement.
Consider the test set $T = \{t_1: <x = -5 >\}$.
- It is adequate with respect to statement and block coverage criteria, but does not reveal the bug.

Another test set $T' = \{t_1: <x = -5 > \ t_2: <x = 3 >\}$ does reveal the bug. It covers the decision whereas T does not. **Check!**

This example illustrates how and why decision coverage might help in revealing a bug that is not revealed by a test set adequate with respect to statement and block coverage.
Decision Coverage: Computation

- The **decision coverage** of \(T \) with respect to \((P, R)\) is computed as \(D_c / (D_e - D_i) \), where \(D_c \) is the number of decisions covered.
 - \(D_i \) is the number of infeasible decisions, and \(D_e \) is the total number of decisions in the program, i.e., the size of the decision coverage domain.
 - \(T \) is considered adequate with respect to the decision coverage criterion if the decision coverage of \(T \) with respect to \((P, R)\) is 1.
Decision Coverage: Domain

- The domain of decision coverage consists of all decisions in the program under test.
Condition Coverage

A decision can be composed of a simple condition such as $x < 0$, or of a more complex condition, such as \((x < 0 \text{ AND } y < 0) \text{ OR } (p \geq q)\).

AND, OR, XOR are the logical operators that connect two or more simple conditions to form a compound condition.

A simple condition is considered covered if it evaluates to true and false in one or more executions of the program in which it occurs.

A compound condition is considered covered if each simple condition it is comprised of is also covered.
Decision and Condition Coverage (1)

- Decision coverage is concerned with *the coverage of decisions regardless of* whether or not a decision corresponds to *a simple or a compound* condition. Thus in the statement

 1. if \((x < 0 \text{ and } y < 0)\) {
 2. \(z = \text{foo}(x, y)\)

- There is *only one decision* that leads control to line 2 if the compound condition inside the *if* evaluates to *true*.

- However, a compound condition might evaluate to *true* or *false in one of several ways*.

```plaintext
Question
if (x < 0)
  if (y < 0)
    z = \text{foo}(x, y);
How many decision?
```
Referring to the following code

1. if \((x < 0 \text{ and } y < 0)\) {
2. \(z = \text{foo}(x, y)\)

The condition at line 1 evaluates to false when \(x \geq 0\) regardless of the value of \(y\).

Another condition, such as \((x < 0 \text{ OR } y < 0)\), evaluates to true regardless of the value of \(y\), when \(x < 0\).

With this evaluation characteristic in view, compilers often generate code that uses short circuit evaluation of compound conditions.
Here is a possible translation:

```java
1     if (x < 0 and y < 0) {
2       z = foo(x, y);
1     } else {
2       z = foo(x, y);
3     }
```

We now see two decisions, one corresponding to each simple condition in the `if` statement.
Condition Coverage

- The *condition coverage* of T with respect to (P, R) is computed as $C_c / (C_e - C_i)$, where
 - C_c is the number of simple conditions covered,
 - C_i is the number of infeasible simple conditions, and
 - C_e is the total number of simple conditions in the program.

- T is considered adequate with respect to the condition coverage criterion if the condition coverage of T with respect to (P, R) is 1.

- An alternate formula where each simple condition contributes 2, 1, or 0 to C_c depending on whether it is covered, partially covered, or not covered, respectively, is:

\[
\frac{C_c}{2 \times (C_e - C_i)}
\]
Condition Coverage: Example (1)

- Partial specifications for computing z

<table>
<thead>
<tr>
<th>$x < 0$</th>
<th>$y < 0$</th>
<th>Output (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>foo1(x, y)</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>foo2(x, y)</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>foo2(x, y)</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>foo1(x, y)</td>
</tr>
</tbody>
</table>

1 begin
2 int x, y, z;
3 input (x, y);
4 if($x < 0 \text{ and } y < 0$)
5 \hspace{1em} z = foo1(x, y);
6 \hspace{1em} else
7 \hspace{2em} z = foo2(x, y);
8 output(z);
9 end

This program has a bug based on the specification.
Condition Coverage: Example (2)

- Consider the test set
 \[T = \{ t_1 : x = -3, y = -2 > t_2 : x = -4, y = -2 > \} \]

- Check that T is adequate with respect to the statement, block, and decision coverage criteria and the program behaves correctly against \(t_1 \) and \(t_2 \).

- \(C_c = 1, C_e = 2, C_i = 0 \). Hence, condition coverage for \(T = 0.5 \).

```
1   begin
2     int x, y, z;
3     input (x, y);
4     if(x<0 and y<0)
5       z=f001(x,y);
6     else
7       z=f002(x,y);
8     output(z);
9   end
```
Condition Coverage: Example (3)

- Add the following test case to T: t_3: $< x = 3, y = 4 >$

- Check that the enhanced test set T is adequate with respect to the *condition coverage criterion* and possibly reveals a bug in the program.

 - The programs shows $z = \text{foo}2(x, y)$
 - But the specifications says $z = \text{foo}1(x, y)$

- **Under what conditions will the bug be revealed by t_3?**

```c
begin
  int x, y, z;
  int (x, y);
  if(x<0 and y<0)
    z=foo1(x,y);
  else
    z=foo2(x,y);
  output(z);
end
```
Condition/Decision Coverage

• When a decision is composed of a compound condition, decision coverage does not imply that each simple condition within a compound condition has taken both values true and false.

• Condition coverage ensures that each component simple condition within a condition has taken both values true and false.

• Question: Does the condition coverage require each decision to take all its outcomes?
Condition/Decision Coverage: Example

- Consider the following program and two test sets.

```
begin
  int x, y, z;
  input (x, y);
  if(x<0 or y<0)
    z=foo-1(x,y);
  else
    z=foo-2(x,y);
  output(z);
end
```

\[
T_1 = \left\{ \begin{array}{l}
 t_1: < x = -3 \quad y = -2 > \\
 t_2: < x = 4 \quad y = -2 >
\end{array} \right\}
\]

\[
T_2 = \left\{ \begin{array}{l}
 t_1: < x = -3 \quad y = 2 > \\
 t_2: < x = 4 \quad y = -2 >
\end{array} \right\}
\]

- **In-class exercise:**
 - Is \(T_1 \) is adequate with respect to decision coverage?
 - Is \(T_1 \) is adequate with respect to condition coverage?
 - How about \(T_2 \)?
Condition/Decision Coverage: Definition

The condition/decision coverage of T with respect to (P, R) is computed as $(C_c + D_c) / ((C_e - C_i) + (D_e - D_i))$, where

- C_c is the number of simple conditions covered
- D_c is the number of decisions covered,
- C_e and D_e are the number of simple conditions and decisions respectively
- C_i and D_i are the number of infeasible simple conditions and decisions, respectively.
Condition/Decision Coverage: Example

- **In-class exercise:** Is T adequate with respect to the condition/decision coverage criterion?

```plaintext
1 begin
2   int x, y, z;
3   input (x, y);
4   if (x < 0 or y < 0)
5     z = foo-1 (x, y);
6   else
7     z = foo-2 (x, y);
8   output (z);
9 end
```

$T = \left\{ \begin{array}{l}
t_1: \quad < x = -3 \quad y = -2 > \\
t_2: \quad < x = 4 \quad y = 2 > \\
\end{array} \right\}$
Multiple Condition Coverage
Multiple Condition Coverage

- Consider a compound condition with two or more simple conditions. Using condition coverage on some compound condition C implies that each simple condition within C needs to be evaluated to true and false.

- However, does it imply that all combinations of the values of the individual simple conditions in C have been exercised?
Multiple Condition Coverage/Simple Condition Coverage

- Multiple condition coverage versus simple condition coverage is similar to uni-dimensional equivalence class partitioning versus multi-dimensional equivalence partitioning.
 ➔ considered separately versus considered simultaneously
Multiple Condition Coverage: Example

- Consider \(D = (A < B) \text{ OR } (A > C) \) composed of two simple conditions \(A < B \) and \(A > C \). The four possible combinations of the outcomes of these two simple conditions are enumerated in the table.
 - Check: Is \(T' \) 100% w.r.t. the decision coverage?
 - Check: Is \(T' \) 100% w.r.t. the condition coverage?
 - Check: Does \(T' \) cover all four combinations?
 - Check: Does \(T' \) cover all four combinations?

\[
\begin{array}{|c|c|c|c|}
\hline
 & A < B & A > C & D \\
\hline
1 & true & true & true \\
2 & true & false & true \\
3 & false & true & true \\
4 & false & false & false \\
\hline
\end{array}
\]

\[
T = \left\{ \begin{array}{c}
t_1: \quad < A = 2 \quad B = 3 \quad C = 1 > \\
t_2: \quad < A = 2 \quad B = 1 \quad C = 3 > \\
\end{array} \right\}
\]

\[
T' = \left\{ \begin{array}{c}
t_1: \quad < A = 2 \quad B = 3 \quad C = 1 > \\
t_2: \quad < A = 2 \quad B = 1 \quad C = 3 > \\
t_3: \quad < A = 2 \quad B = 3 \quad C = 5 > \\
t_4: \quad < A = 2 \quad B = 1 \quad C = 5 > \\
\end{array} \right\}
\]
Multiple Condition Coverage: Definition (1)

• Suppose that the program under test contains a total of \(n \) decisions. Assume also that each decision contains \(k_1, k_2, \ldots, k_n \) simple conditions. Each decision has several combinations of values of its constituent simple conditions.
• For example, decision \(i \) will have a total of \(2^{k_i} \) combinations. Thus the total number of combinations to be covered is

\[
\sum_{i=1}^{n} 2^{k_i}
\]
Multiple Condition Coverage: Definition (2)

- The **multiple condition** coverage of T with respect to (P, R) is computed as $\frac{C_c}{(C_e - C_i)}$, where:
 - C_c is the number of combinations covered,
 - C_i is the number of infeasible simple combinations, and
 - C_e is the total number of combinations in the program.

- T is considered adequate with respect to the multiple condition coverage criterion if the condition coverage of T with respect to (P, R) is 1.
Multiple Condition Coverage: Example (1)

• Consider the following program with specifications in the table.

```plaintext
1  begin
2  int A, B, C, S=0;
3  input (A, B, C);
4  if (A<B and A>C) S=f1(A, B, C);
5  if (A<B and A<=C) S=f2(A, B, C);
6  if (A>=B and A<=C) S=f4(A, B, C);
7  output(S);
8  end
```

<table>
<thead>
<tr>
<th></th>
<th>A < B</th>
<th>A > C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>true</td>
<td>true</td>
<td>f1(P, Q, R)</td>
</tr>
<tr>
<td>2</td>
<td>true</td>
<td>false</td>
<td>f2(P, Q, R)</td>
</tr>
<tr>
<td>3</td>
<td>false</td>
<td>true</td>
<td>f3(P, Q, R)</td>
</tr>
<tr>
<td>4</td>
<td>false</td>
<td>false</td>
<td>f4(P, Q, R)</td>
</tr>
</tbody>
</table>

• There is an obvious bug in the program: computation of S for one of the four combinations, line 3 in the table, has been left out.
Multiple Condition Coverage: Example (2)

- Is T adequate w.r.t. decision coverage?
- Multiple condition coverage?
- Does it reveal the bug?

```plaintext
1     begin
2     int A, B, C, S=0;
3     input (A, B, C);
4     if(A<B and A>C) S=f1(A, B, C);
5     if(A<B and A<C) S=f2(A, B, C);
6     if(A>B and A<C) S=f4(A, B, C);
7     output(S);
8     end
```

$$T = \begin{cases}
 t_1 & : \quad < A = 2 \quad B = 3 \quad C = 1 \\
 t_2 & : \quad < A = 2 \quad B = 1 \quad C = 3
\end{cases}$$
Multiple Condition Coverage: Example (3)

- Is T' 100% with respect to the decision coverage?
- Does T' reveal the bug?

```c
begin
  int A, B, C, S=0;
  input (A, B, C);
  if(A<B and A>C) S=f1(A, B, C);
  if(A<B and A<=C) S=f2(A, B, C);
  if(A>B and A<=C) S=f4(A, B, C);
  output(S);
end
```

$T' = \begin{cases}
 t_1 : \quad < A = 2, B = 3, C = 1 > \\
 t_2 : \quad < A = 2, B = 1, C = 3 > \\
 t_3 : \quad < A = 2, B = 3, C = 5 >
\end{cases}$
Multiple Condition Coverage: Example (4)

• In-class exercise:
 – Is T' 100% w.r.t. simple condition coverage?
 – Is T' 100% w.r.t. multiple condition coverage?

• Now add a test to T' to cover the uncovered combinations.
 – Does your test reveal the bug?
 – If yes, then under what conditions?