Thresholding by quantization

Let \(p \) be the picture histogram, so that \(p(x) \) is the number of pixels of value \(x \), for \(x = 0, \ldots, M \). We are looking for a threshold value \(t \) and two values \(q_1, q_2 \), such that all pixels in the range \(0 \leq x < t \) are replaced with \(q_1 \), and all pixels in the range \(t \leq x \leq M \) are replaced with \(q_2 \). Define the following expression as the total error:

\[
E(t, q_1, q_2) = \sum_{x=0}^{t-1} (x - q_1)^2 p(x) + \sum_{x=t}^{M} (x - q_2)^2 p(x).
\]

For each \(t \) we can compute the minimum of \(E \) by choosing the “best possible” values for \(q_1, q_2 \). These are computed by taking the derivatives of \(E \) with respect to \(q_1, q_2 \).

Taking the derivative of \(e \) with respect to \(q_1 \) we have:

\[
\frac{\partial e}{\partial q_1} = 2 \sum_{x=0}^{t-1} xp(x) - 2q_1 \sum_{x=0}^{t-1} p(x).
\]

The requirement that \(\frac{\partial e}{\partial q_1} = 0 \) gives:

\[
q_1 = \frac{\sum_{x=0}^{t-1} xp(x)}{\sum_{x=0}^{t-1} p(x)}
\]

and similarly:

\[
q_2 = \frac{\sum_{x=t}^{M} xp(x)}{\sum_{x=t}^{M} p(x)}
\]

Therefore, we can compute the value of \(E \) for any given value of \(t \) by first computing \(q_1, q_2 \) and then substituting their values in the above expression for \(E \). Since there are only 255 possible values for \(t \) the minimizer of \(t \) can be determined by examining all values of \(E(t) \) for \(t = 1..255 \).