12.6 QUADRATIC SURFACES

DEF A QUADRATIC SURFACE is the set of points \((x, y, z)\) in \(\mathbb{R}^3\) which satisfy a QUADRATIC EQUATION in \(x, y, z\):

\[Q(x, y, z) = 0 \] (A LEVEL SET EQUATION)

Different choices of coefficients in \(Q\) give different shaped surfaces.

EX 1 \[x^2 + y^2 + z^2 - 4 = 0 \] SPHERE

2 \[-z + 4x^2 + y^2 = 0 \] ELLIPTIC PARABOLOID (BOWL)

3 \[y^2 - x^2 - z = 0 \] HYPERBOLIC PARABOLOID (SADDLE SURFACE)

4 \[x^2 + y^2 = 4 \] CYLINDER
WARM UP Families of Quadratic Curves in \mathbb{R}^2

Ex 1 \[y = x^2 + k \] for different parameters k

Parabolas

\[k = \pm 1 \]

"Translate $y = x^2$ up by $k"$

Ex 2 \[x^2 + \left(\frac{y}{2} \right)^2 = k^2 \]

Intercepts
- If $y = 0$, $x = \pm k$
- If $x = 0$, $y = \pm 2k$

Concentric Ellipses
3) Hyperbola: \(y^2 - 4x^2 = k \)

If \(k = 0 \) get \(y = \pm 2x \) asymptotes.

If \(k = 1 \) then \(x = \infty, y = \pm 1 \)

If \(k = -1 \) then \(y = 0, x = \pm \frac{1}{2} \)

As \(|k| \) increases, the asymptotes move out along axes and the eccentricity remains same.

Exs of Quadric Surface

1) \(x^2 + y^2 + z^2 = r^2 \)

Sphere: radius \(r \), center origin.
\(z = 4x^2 + y^2 \)

Elliptic Paraboloid

To make this picture, I sliced the surface with planes parallel to the coordinate planes to get curves in these planes.

\[
\begin{align*}
 z &= k \\
 4x^2 + y^2 &= k \\
 x^2 + \left(\frac{y}{2} \right)^2 &= \frac{k}{4}
\end{align*}
\]

\(k > 0 \)

\(k = 0 \)

\(k < 0 \)

Ellipses
\[x = \frac{1}{k} \quad \text{and} \quad y = \frac{1}{k} \]

\[Z = 4k^2 + y^2 \quad \text{for} \quad k = k \]

\[Z = 4x^2 + z^2 \quad \text{for} \quad k = 0 \]

Steep paraboloids \(z \equiv k \)

3. Hyperboloid Paraboloid (Saddle Surface)

\[Z = \frac{y^2}{k^2} - \frac{x^2}{k^2} \quad \text{for} \quad k > 0 \]

\[y^2 - x^2 = k^2 \]

\[\left(\frac{y}{k} \right)^2 - \left(\frac{x}{k} \right)^2 = 1 \]

\[Z = -\frac{1}{k^2} \quad \text{for} \quad k > 0 \]

\[\left(\frac{x}{k} \right)^2 - \left(\frac{y}{k} \right)^2 = 1 \]
Putting it all together

See slides too

4. Ellipsoid

\[\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2 = 1 \]

Slices in \(x = \pm a, y = \pm b, z = \pm c \) are ellipses.
\(z^2 = 9x^2 + y^2 \)

DOUBLE ELLIPTICAL CONE

\[z = k, \quad 9x^2 + y^2 = k^2 \]

\[\left(\frac{3x}{k} \right)^2 + \left(\frac{y}{k} \right)^2 = 1 \]

\[y = 0 \rightarrow z = \pm 3x \]

\[z^2 = y^2 \rightarrow z = \pm y \]

Ellipse

\(\in \Theta \)
\[
x^2 + y^2 = 1
\]

\[
x^2 + y^2 = 4
\]

Slice at \(x = k\) and get

\[
y^2 + k^2 = 1
\]

For \(k = 0\), \(k > 0\) and \(k < 0\):

\[
x^2 + y^2 - (x^2 - 1) = 1
\]

For \(k > 1\), \(k < 1\):

\[
-x^2 + y^2 - (x^2 - 1) = -1
\]

What is this?