14.5 The Chain Rule

Case 0: CR in Case I

Given:

\[x = g(t) \quad \text{and} \quad y = f(x) \]

\[\text{Slope} = f'(x_0) \]

\[\text{Slope} = g'(t_0) \]

\[\text{Slope} = (f \circ g)'(t_0) \]

Form Composition

\[\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \]

Chain Rule

- Slope of L3 = Slope of L2 \times \text{Slope of } L_1

\[(f \circ g)'(t_0) = f'(g(t_0)) \cdot g'(t_0) \]
CASE I

OR FOR FUNCTIONS ON CURVES

\((x, y) = \mathbf{r}(t) = (\cos t, \sin t) \)

where \(\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^2 \) is curve in plane.

\[z = f(x, y) = 3x^2 + 4y^2 = \text{TEMPERATURE} \]

AT PT \((x, y)\) IN PLANE

How does temperature of at change with time \(\frac{dz}{dt} \) at \(t = \pi/4 \)?

FIND \(\frac{dz}{dt} \)

METHOD 1 From the Composition,

\[z(t) = f(x(t), y(t)) = f(x(t), y(t)) \]

\[= 3\cos^2 t + 4\sin^2 t \]

\[= 3 + 2\cos^2 t \]

\[\Rightarrow \frac{dz}{dt} = 2\sin t \cos t \]

\(\frac{dz}{dt}(\pi/4) = 2 \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{2} = 1 \).
METHOD II: The CALE III Chain Rule

\[
\frac{dz}{dt} = \frac{dz}{dx} \frac{dx}{dt} + \frac{dz}{dy} \frac{dy}{dt}
\]

\[
\frac{dx}{dt} = \frac{dy}{dt} + \frac{dy}{dt}
\]

EX

\[
\frac{dz}{dx} = 6x \quad \frac{dz}{dy} = 8y
\]

\[
\frac{dx}{dt} = -8\sin t \quad \frac{dy}{dt} = \cos t
\]

So,

\[
\frac{dz}{dt} = 6x(t) \cdot (-8\sin t) + 8y(t) \cdot \cos t
\]

\[
= -48 \cos t \sin t + 8 \cos t \sin t
\]

\[
= 2 \cos t \sin t
\]

Note Just like in CALE I, must evaluate derivatives of outer function (\(z = f(x, y) \)) at the values of inner functions (\(x = x(t) \) and \(y = y(t) \)).
Suppose \(z = f(x, y) \) \((x, y) = t(t) \)

\(t(0) = (1, 3) \)
\(t'(0) = (2, 5) \)

\(f(1, 3) = 4 \)
\(\frac{df}{dx}(1, 3) = 6 \)
\(\frac{df}{dy}(1, 3) = 7 \)

Then

\[
\frac{dz}{dt}(0) = \frac{df}{dx}(t(0)) \frac{dx}{dt}(0) + \frac{df}{dy}(t(0)) \frac{dy}{dt}(0)
\]

\[
= \frac{df}{dx}(1, 3) \frac{dx}{dt}(0) + \frac{df}{dy}(1, 3) \frac{dy}{dt}(0)
\]

\[
= 6 \times 2 + 7 \times 5 = 47
\]

Alternate form of CR for functions on curves

\(\pi : \mathbb{R}^1 \to \mathbb{R}^2 \)
\(f : \mathbb{R}^2 \to \mathbb{R}^1 \)

\(\pi(t) = (x(t), y(t)) \)
\(z = f(x(t), y(t)) \)

\(\pi'(t) = (x'(t), y'(t)) \)

\(\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \)

"Gradient up \(f \)"
\[f_0 : \mathbb{R} \rightarrow \mathbb{R} \]

\[(f_0 \circ \vec{r})' (t) = \frac{\partial f_0}{\partial x} (\vec{r} (t)) \frac{dx}{dt} (t) + \frac{\partial f_0}{\partial y} (\vec{r} (t)) \frac{dy}{dt} (t) \]

\[= \left(\frac{\partial f_0}{\partial x} (\vec{r} (t)), \frac{\partial f_0}{\partial y} (\vec{r} (t)) \right) \cdot \left(\frac{dx}{dt} (t), \frac{dy}{dt} (t) \right) \]

\[= \nabla f_0 (\vec{r} (t)) \cdot \vec{r}' (t) \]

Case 2

Chain Rule for Functions on Surfaces

- \(\vec{r} : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \)
- **Parameterization of Surface**

\[\vec{r} (u, v) = (u, v) \]

\[x = u, \quad y = v, \quad z = u^2 + v^2 \]

Double Cone

\[\nabla \cdot \mathbf{F} = 2 \]

Function

\[w = f(x, y, z) = \frac{1}{3} x^2 + 4y^2 + 5z^2 = \text{Air Pressure at } (x, y, z) \]
Find \(\frac{\partial w}{\partial u} \) \(\text{at} \quad (u_0, v_0) = (0, 2) \)

\[w(u, v) = f \left(\vec{r}(u, v) \right) \]
\[= \text{Air Pressure at point on curve with parameter} \ (u, v) \]

\[\vec{r} (0, 2) = (2, 0, 2) \]

So

\[\frac{\partial w}{\partial u} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial u} \]

\[\frac{\partial w}{\partial u} (0, 2) = \frac{\partial w}{\partial x} (2, 0, 2) \frac{\partial x}{\partial u} (0, 2) + \frac{\partial w}{\partial y} (2, 0, 2) \frac{\partial y}{\partial u} (0, 2) \]
\[+ \frac{\partial w}{\partial z} (2, 0, 2) \frac{\partial z}{\partial u} (0, 2) \]

\[= (6x) \left(-\kappa_2 u \right) + (8y) \left(\kappa_2 v \right) + 107 \cdot (0) \]

\[= 12 \cdot (-2, 0, 0) + 0 + 0 \]

\[= (2, 0, 0) \]

As go around circle \(\frac{\partial w}{\partial u} = 2 \),
Ref. of Pressure \(0 \) at \((0, 2) \)