14.8 CONstrained Optimization + Method of

LAGRANGIAN MULTIPLIERS

Most real-world opt^n problems are constrained.

SIMPLE CASE (only one b = wo)

Find Hess MAX+MIN of

\[\mathcal{z} = f(x,y) \]

OBJECTIVE FUNCTION

subject to constraint that \((x,y)\) lie on

the curve \(C\) in plane given as a level curve of a 2nd \(f^a\),

\[\mathcal{g}(x,y) = k \]

CONSTRAINT EQU.

THINK

\[\mathcal{z} = f(x,y) = \text{ELEVATION @ Lake Tahoe} \]

\[\mathcal{g}(x,y) = k \]

is a SNOW-SHOE TRAIL

Find highest + lowest elevation on the trail
Quick Theory

Let \((y = \bar{v}(t))\) parameterize constraint curve \(C\) (trail)

Then \(h(t) = f(\bar{v}(t))\) is height along trail

Find \(\text{absolute max/min of } h\).

Method I (See 14.7B EX 2)

1. Calculate formula for \(h\)
2. Solve \(\text{case I } \Rightarrow \text{max/min problem}\)

Method II (Lagrange Multipliers)

Critical points of \(h\) satisfy

\[0 = h'(t) = \nabla f(\bar{v}(t)) \cdot \bar{v}'(t) \]

\(\Rightarrow\) must be normal to \(C\) at CPT.

But by 14.6 we know \(\nabla g\) is always normal to level curve \(g(x, y) = k\).

So at CPT \(\nabla f \parallel \nabla g\)

Or level curve of \(f\) tangent to level curve of \(g\).
Find max/min of \(z = f(x,y) = y^2 - x^2 \) on curve \(g(x,y) = x^2 + y^2 = 1 \).

Strategy

1. Sketch level curves \(f(x,y) = c \) of \(f \).
2. What is max value of \(c \) for which level curve of \(f \) intersects constraint curve \(x^2 + y^2 = 1 \).

(i.e. What is highest elevation \(c \), along show that \(f \) and \(x^2 + y^2 = 1 \) have a common tangent.)
As $c \uparrow$, last c-value for which level curve intersect is one for which target line to $g=k$ agrees with target line to $f=c$.

Once Again: $\nabla f \parallel \nabla g$.

Or $\nabla f = \lambda \nabla g$ for some λ.

$\lambda = \text{Lagrangian multiplier } \ (\lambda = L)$

Method: Find value of f at all points (x_0, y_0) for which there is a λ so that

1. $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$

And 2. $g(x_0, y_0) = k \quad \text{(must be an constant)}$.
Example continued

\[\nabla g = (2x, 2y) \]
\[\nabla f = (-2x, 2y) \]

Get \((2x, 2y) = \lambda (2x, 2y)\)

or

\[
\begin{align*}
-x &= \lambda x \quad (1) \\
y &= \lambda y \quad (2) \\
x^2 + y^2 &= 1 \quad (3)
\end{align*}
\]

3 M E Q U A T I O N S \n3 U N K N O W N S \((x, y, \lambda)\)

\[\begin{align*}
(1+\lambda)x &= 0 \\
(1-\lambda)y &= 0 \\
x^2 + y^2 &= 1
\end{align*} \]

GET R I T S = 0 AND FACTOR

1. \(\lambda = -1\) or \(x = 0\)
2. \(\lambda = 1\)
3. \(-2y = 0 \Rightarrow y = 0\)

By 3, \(x = \pm 1\)

Get \((x, y, \lambda) = (\pm 1, 0, -1)\) \(\Rightarrow \frac{f(\pm 1, 0)}{\text{min}} = -1\)

or

\(x = 0\)

By 3, \(y = \pm 1\)

By 2, \(\lambda = 1\)

Get \((x, y, \lambda) = (0, \pm 1, 1)\) \(\Rightarrow f(0, \pm 1) = 1\) \(\text{max}\)
TREE DIAGRAM

TRACE ALL Possible Branches

\[\lambda = 1 \]
\[\gamma = 0 \]

\[\gamma = -1 \]
\[\gamma = +1 \]

\[x = -1 \]
\[x = +1 \]
\[y = 1 \]
\[y = -1 \]

EX. 2

Find \(\text{MAX} + \text{MIN} \) of \(f(x,y) = x^2 + y^2 \)
on rotated ellipse \(4(x+y)^2 + (x-y)^2 = 1 \)

GEOMETRIC METHOD

LEVEL CURVES of \(f \)

CONSTRAINT ELLIPSE
EX2 Algebraic Method

Find maximum of \(z = f(x,y) = x^2 + y^2 \)
on \(g(x,y) = 4(x+y)^2 + 6(x-y)^2 = 1 \)
\[= 5x^2 + 5y^2 + 6xy = 1 \]

\[f_x = \lambda g_x : \quad 2x = \lambda (10x + 6y) \quad \text{(1)} \]
\[f_y = \lambda g_y : \quad 2y = \lambda (10y + 6x) \quad \text{(2)} \]
\[g = 1 \quad 5x^2 + 5y^2 + 6xy = 1 \quad \text{(3)} \]

\(\text{(1)} - \text{(2)} : \quad 2(x-y) = \lambda [10(x-y) + 6(y-x)] \]

or \((x-y)[10\lambda - 6\lambda - 2] = 0 \)

\((x-y)(4\lambda - 2) = 0 \quad \text{(4)} \)

By \(\text{(4)} \) \(y = x \quad \text{or} \quad \lambda = \frac{1}{2} \)

\[y = x \quad \text{By \(\text{(3)} \)} \quad 16x^2 = 1 \Rightarrow x = \pm \frac{1}{4} \]

So get \((x,y) = (\pm \frac{1}{4}, \pm \frac{1}{4}) \)

By \(\text{(4)} \) \(\pm \frac{1}{2} = \lambda \left(\frac{10}{4} + \frac{6}{4} \right) \Rightarrow \lambda = \frac{1}{8} \).

\(\text{Ver} \ 2 \) hands with \(\text{Tese}(x,y,\lambda) \)

\(\lambda = \frac{1}{2} \quad \text{By \(\text{(4)} \)} \quad 4x = 10x + 6y \Rightarrow y = -x \)

\[\text{By \(\text{(3)} \)} \quad 4x^2 = 1 \Rightarrow x = \pm \frac{1}{2} \]
So we get:

\[(x, y, \lambda) = \left\{ \begin{array}{c}
\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right) \\
\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)
\end{array} \right. \]

MAX

\[P = \frac{1}{2}\]

CHECK 2 HOURS.

TREE DIAGRAM

\[
\begin{array}{c}
\text{3} \\
\text{4} \\
\text{2}
\end{array}
\]

\[
\begin{array}{c}
\text{1} \\
\text{3}
\end{array}
\]

\[
\begin{array}{c}
\text{1} \\
\text{2}
\end{array}
\]
ALGEBRAIC METHOD

\[g(x,y) = 4(x+y)^2 + (x-y)^2 \]
\[= 5x^2 + 5y^2 + 6xy \]

\[f_x = \lambda g_x; \quad 2x = \lambda (10x + 6y) \quad 1 \]
\[f_y = \lambda g_y; \quad 2y = \lambda (10y + 6x) \quad 2 \]

\[1: \quad (2-10\lambda)x = 6\lambda y \quad 3 \]
\[2: \quad (2-10\lambda)y = 6\lambda x \quad 4 \]

\[3 \times 4: \quad (2-10\lambda)^2 xy = 36\lambda^2 xy \]
\[xy((2-10\lambda)^2 - 36\lambda^2) = 0 \]

\[4xy (16\lambda^2 - 10\lambda + 1) = 0 \]

Gives \(x = 0 \) or \(y = 0 \) or \(16\lambda^2 - 10\lambda + 1 = 0 \)

By \(3 \): \(x = 0 \) or \(y = 0 \).

- \(\lambda = 0 \): \[y = 0 \]. \((0,0) \) **NOT ON CURVE**
- \(y = 0, \lambda = 0 \) **NOT ON CURVE**
\[16x^2 - 10y + 7 = 0 \]

By \(\lambda = 0 \) or \(\lambda = \frac{1}{2} \) by Quadratic Formula:

\[\lambda = \frac{1}{2} \]

By 3 \(-3x = 3y \Rightarrow y = -x\)

From constraint \(5x^2 + 5y^2 + 6xy = 1 \)

Get \(4x^2 = 1 \)

\[x = \pm \frac{1}{2} \]

Get \((x, y, \lambda) = (\pm \frac{1}{2}, \pm \frac{1}{2}, \frac{1}{2}) \) \(f = \frac{1}{2} \) (17 marks)

\[\lambda = \frac{1}{2} \]

By 3 \(\frac{3}{4} x = \frac{3}{4} y \Rightarrow y = x \)

By 5 \(16x^2 = 1 \)

\[x = \pm \frac{1}{4} \]

Get \((x, y, \lambda) = (\pm \frac{1}{4}, \pm \frac{1}{4}, \frac{1}{8}) \) \(f = \frac{1}{8} \) (9 marks)
Find max/min of \(f(x,y) = y e^{-x^2} \)
on ellipse \(4x^2 + 9y^2 = 1 \)

Geometric Method

\[y e^{-x^2} = c \implies y = c e^{-x^2} \]

Algebraic Method
\[ye^{-x^2} = 8 \lambda x \quad (1) \]
\[e^{-x^2} = 18 \lambda y \quad (2) \]
\[4x^2 + 9y^2 = 1 \quad (3) \]

\(3 \) \(\implies \) \(\frac{18\lambda y}{-8\lambda x} = \frac{18\lambda y^2}{-8\lambda x} \lambda = 0 \quad (4) \)

\(4 \) gives \(\lambda = 0 \) or \(9y^2 = 4x \)
Δ = 0
By (2) get $e^2 = 0$ no solutions

$9y^2 = 4x$

By (3) $4x^2 + 4x = 1$

$x = \frac{-1 \pm \sqrt{2}}{2}$

Since $x = \frac{9}{4}y^2 \geq 0$ only have

$x_* = \frac{-1 + \sqrt{2}}{2}$

By (3) $y_* = \frac{\pm \sqrt{2(2\sqrt{2} - 2)}}{3}$

$f(x_*, y_*) = \frac{\pm \sqrt{2} \sqrt{\sqrt{2} - 1}}{3} \cdot \frac{-1 + \sqrt{2}}{2}$