MATH 251 (Fall 2011) Exam III, Nov 22nd

No calculators, books or notes! Show all work and give complete explanations. This 65 min exam is worth 50 points.

(1) [8 pts] Let \(C \) be the straight line segment in the \(xy \)-plane from the point \((1,2)\) to the point \((5,3)\). Let \(\mathbf{F} \) be the vector field in the plane defined by \(\mathbf{F}(x,y) = \frac{1}{2}(xi + yj) \).

(a) Make a sketch showing the vector \(\mathbf{F}(x,y) \) at three points \((x,y)\) on \(C \). Using your sketch, determine whether \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is positive, negative, or zero. Explain!

The angle between \(\mathbf{F} \) and the tangent vector \(\frac{\mathbf{T}}{||\mathbf{T}||} \) to \(C \) is always acute. So

\[
\mathbf{F} \cdot \frac{\mathbf{T}}{||\mathbf{T}||} = ||\mathbf{F}|| ||\mathbf{T}|| \cos \theta > 0
\]

(as \(-\pi/2 < \theta < \pi/2 \))

So \(\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C (\mathbf{F} \cdot \mathbf{T}) \, ds > 0 \).

(b) Now calculate \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

\[
\mathbf{T}(t) = (1,2) + t ((5,3) - (1,2)) = (1,2) + t (4,1)
\]

\[
\mathbf{T}(t) = (4t,1) \quad 0 \leq t \leq 1
\]

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \frac{1}{2} \int_0^1 (1 + 4t, 2 + t) \cdot (4,1) \, dt
\]

\[
= \frac{1}{2} \int_0^1 6 + 11t \, dt = \frac{29}{4}
\]
(2) [10 pts]
(a) Let D be the half-disc in the xy-plane given by $x^2 + y^2 \leq 9$ and $x \geq 0$. Calculate $\iint_D e^{-(x^2+y^2)} \, dA$.

\[
\iint_D e^{-(x^2+y^2)} \, dA \quad \theta = \frac{\pi}{2}, \quad r = 0
\]

\[
\int_{\pi/2}^{3} e^{-r^2} \, r \, dr \, d\theta = \int_{\pi/2}^{\pi} \left(\int_{0}^{3} e^{-r^2} \, r \, du \right)\left(\int_{0}^{\pi/2} \, d\theta \right)
\]

\[
u = -r^2, \quad du = 2r \, dr
\]

\[
= \frac{\pi}{2} \int_{0}^{9} e^{-u} \, du = \frac{\pi}{2} \left[-e^{-u}\right]_{0}^{9} = \frac{\pi}{2} (1-e^{-9})
\]

(b) Let D be the region in the first quadrant (i.e., $x \geq 0$ and $y \geq 0$) of the xy-plane that is bounded by the y axis and the curves $y = \sin x$ and $y = \cos x$, and such that $x \leq \pi/4$. Calculate $\iint_D y \, dA$.

\[
\iint_D y \, dA \quad \theta = \frac{\pi}{2}, \quad r = 0
\]

\[
\int_{0}^{\pi/2} \int_{0}^{\cos x} y \, dy \, dx = \int_{0}^{\pi/4} \left[\frac{1}{2} y^2 \right]_{0}^{\cos x} \, dx
\]

\[
= \frac{1}{2} \int_{0}^{\pi/4} \cos^2 x - \sin^2 x \, dx = \frac{1}{2} \int_{0}^{\pi/4} \cos 2x \, dx
\]

\[
= \frac{1}{2} \left[\sin 2x \right]_{0}^{\pi/4} = \frac{1}{4}
\]
(3) [10 pts] Let \(r(t) = (2 \cos t, 3 \sin t) \), for \(0 \leq t \leq 2\pi \), and let \((u, v) = F(x, y) = (3x + 2y, x^2 + 5y^2) \). The composition \(s(t) = F(r(t)) \) is a curve in the plane. Use the Chain Rule from Multivariable Calculus to answer the following two questions.

(a) At which times, \(t \), is the tangent vector to the curve \((u, v) = s(t)\) vertical?

T.V. is vertical when \(s'(t) = u'(t)i + v'(t)j = \alpha j \) for some scalar \(\alpha \), i.e., when \(u'(t) = 0 \).

Now by Chain Rule

\[
0 = \frac{du}{dt} = \frac{du}{dx} \frac{dx}{dt} + \frac{du}{dy} \frac{dy}{dt}
\]

\[
= 3(-2\sin t) + 2(3 \cos t)
\]

\[
= 3(-2sint) + 2(3 \cos t)
\]

\[
0 = 6(\cos t - \sin t)
\]

So \(\cos t = \sin t \) \(\implies \tan t = 1 \), \(t = \frac{\pi}{4}, \frac{5\pi}{4} \)

(b) For each of the times you found in (a), is the tangent vector pointing in the +j or -j direction?

T.V. in +j direction \(\implies \frac{dv}{dt} > 0 \)

\[
\frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} + \frac{dv}{dy} \frac{dy}{dt}
\]

\[
= 2(2\cos t)(-2\sin t) + 10(3\sin t)3\cos t
\]

\[
= 82 \cos t \sin t
\]

At \(t = \frac{\pi}{4} \), \(\frac{dv}{dt} = 82 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} > 0 \) \(+j \)

At \(t = \frac{5\pi}{4} \), \(\frac{dv}{dt} = 82 (\frac{-1}{\sqrt{2}})(\frac{-1}{\sqrt{2}}) > 0 \) \(+j \)
(4) [12 pts] Let \(z = f(x, y) = x^3 - 12xy + 8y^3 \).

(a) Find a tangent vector to the level curve \(f(x, y) = 5 \) at the point \((1, -1)\).

A tangent vector \(\vec{v} \) to \(f(x, y) = 5 \) at \((1, -1)\) must be \(1 + \nabla f (1, -1) \).

Now \(\nabla f = \left(3x^2 - 12y, -12x + 24y^2 \right) \)

\[\nabla f (1, -1) = (15, 12) \]

So choose \(\vec{v} = (12, -15) \) for example.

(b) Find all local maxima, local minima, and saddle points of \(f \).

Critical Points (CPTS)

\[0 = 3x^2 - 12y \]
\[0 = -12x + 24y^2 \]

\[\Rightarrow x^2 = 4y \quad \boxed{1} \]
\[\Rightarrow 2y = 2y^2 \quad \boxed{2} \]

So by \(\boxed{1} \) and \(\boxed{2} \):

\[4y + 4 = x^2 - 4y \]
\[\Rightarrow y (y^3 - 1) = 0 \]
\[\Rightarrow y = 0 \text{ or } y^3 = 1 \]
\[\Rightarrow y = 0 \text{ or } y = 1 \]

Now \(y = 0 \Rightarrow x = 0 \) by \(\boxed{1} \)
\[y = 1 \Rightarrow x = 2 \] by \(\boxed{2} \)

CPTS \((0, 0), (2, 1)\)

\[D = \begin{vmatrix} 6x & -12 \\ -12 & 4y \end{vmatrix} \]

\[D = \begin{vmatrix} 0 & -12 \\ -12 & 0 \end{vmatrix} = -144 \text{ < 0} \]

Saddle Point

\[D = \begin{vmatrix} 12 & -12 \\ -12 & 48 \end{vmatrix} = 12 \times 48 - 12 \times 12 > 0 \]

So \(f(x) = 12 > 0 \) at \(x = 2 \)

Local Min.
Let \(z = f(x, y) \) be a function such that

\[
\begin{array}{c|ccccc}
(x, y) & (2, 1) & (-2, -1) & (0, \sqrt{3}) & (3, 0) \\
\hline
\frac{\partial f}{\partial x} & -10 & 10 & 0 & 4 \\
\frac{\partial f}{\partial y} & -2 & 4 & 0 & -3 \\
\end{array}
\]

Which of the \((x, y)\) values in this table are candidates for the absolute maximum and absolute minimum of \(f \) on the curve \(2x^2 - 3xy + 4y^2 = 6 \)? Carefully justify your answers!

This is a constrained optimization problem. So candidates are solutions of Lagrange multipliers equations:

\[
\begin{align*}
\nabla f &= \lambda \nabla g \\
g &= 2x^2 - 3xy + 4y^2 = 6
\end{align*}
\]

Now

\[
\frac{\partial f}{\partial x} = 4x - 3y \\
\frac{\partial f}{\partial y} = -3x + 2y
\]

<table>
<thead>
<tr>
<th></th>
<th>(2, 1)</th>
<th>(-2, -1)</th>
<th>(0, \sqrt{3})</th>
<th>(\sqrt{3}, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial f}{\partial x})</td>
<td>5</td>
<td>-5</td>
<td>-3\sqrt{3}</td>
<td>4\sqrt{3}</td>
</tr>
<tr>
<td>(\frac{\partial f}{\partial y})</td>
<td>2</td>
<td>-2</td>
<td>8\sqrt{3}</td>
<td>-3\sqrt{3}</td>
</tr>
<tr>
<td>(g = 2x^2 - 3xy + 4y^2 = 6)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(\nabla f = \lambda \nabla g)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>-</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>-2</td>
<td>(\sqrt{3})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pledge: I have neither given nor received aid on this exam.

Signature: ____________________

So candidates are \((-2, -1)\) and \((\sqrt{3}, 0)\).