Chapter 6 Hidden-Line Elimination

- Line Segments and Triangles
- Tests for Visibility
- Input Format of 3D Objects
 - Holes and Invisible Line Segments
 - Individual Faces and Line Segments
- Automatic Generation of Input Files
- HP-GL Output Format
- Implementation

Line Segments and Triangles

- A line drawing = set of line segments + set of faces.
- We need to remove invisible line segments.
- Faces can be triangulated into triangles.
- Hidden-Line Elimination becomes testing “whether each line segment is blocked by one or more triangles”

- A line on an edge is considered visible
Tests for Visibility

Tests for Visibility (cont’d)

- **Test 1**: Minimax – both P & Q on the left or right of ABC
Tests for Visibility (cont’d)

- **Test 2**: PQ is one of the triangle edges of ABC

[Diagram showing triangle ABC with PQ as an edge]

- **Test 3**: Minimax – both P & Q nearer than ABC

[Diagram showing a 3D coordinate system with points A, B, C, P, Q, E, J, and I]
Tests for Visibility (cont’d)

- **Test 4**: PQ on a different side of an edge from the 3rd vertex

![Diagram](https://example.com/diagram.png)
Tests for Visibility (cont’d)

- **Test 6**: PQ on a different side of an edge from the 3rd vertex

 Plane $ax + by + cz = h$

- **Test 7**: PQ on a different side of an edge from the 3rd vertex
Tests for Visibility (cont’d)

- **Test 8**: PQ on a different side of an edge from the 3rd vertex

![Diagram](image)

Tests for Visibility (cont’d)

- **Test 9**: PQ on a different side of an edge from the 3rd vertex

![Diagram](image)
Input Format of 3D Objects

- Two parts:
 - A vertex per line: vertex # x_w y_w z_w
 (i.e. vertex number followed by vertex’s world coordinates)
 - After “Faces:”, a polygon (face) per line represented by a sequence of vertex numbers and terminated by a ‘.’ (ccw when viewed from outside). The 2nd vertex must be a convex vertex.

Input Format of 3D Objects (cont’d)

- 1 20 0 0
- 2 20 50 0
- 3 0 50 0
- 4 0 0 0
- 5 20 0 10
- …
- Faces:
 - 1 2 10 9 6 5.
 - 3 4 8 7 12 11.
 - 2 3 11 10.
 - 7 6 9 12.
 - 4 1 5 8.
 - 9 10 11 12.
 - 5 6 7 8.
 - 1 4 3 2.
Holes and Invisible Line Segments

- Top and bottom faces of letter ‘A’ are not proper polygons since they have a hole.

After creating a gap, we have a proper polygon:

1 2 3 4 5 6 7 10 8 10 7

To avoid drawing the line (7 10), we rewrite the above as:

1 2 3 4 5 6 7 –10 8 10 –7

Rule: a line ended with a negative vertex is not drawn (only used in “Faces:” part).
Individual Faces and Lines

- We sometimes want to treat some lines specially, not to obscure lines behind, e.g. line(6 7).
- We simply put these lines in “Faces:” part.

To make individual faces visible from both sides, we specify them twice (ccw and cw) in “Faces:” part.
Auto Generation of Input Files

To automatically generate a cylinder as follows:

- Outer radius: R
- Inner radius: r
- Number of sides: n

n = 6
- Top face: z=1
- Bottom face: z=0
It becomes a circle when \(n \) is large enough.

It becomes solid when \(r = 0 \).

In “Faces:” part:
- \(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ -18 \ 17 \ 16 \ 15 \ 14 \ 13 \ 18 \ -6 \) (top face)
- \(12 \ 11 \ 10 \ 9 \ 8 \ 7 \ -19 \ 20 \ 21 \ 22 \ 23 \ 24 \ 19 \ -7 \) (bottom face)

Top face can be generalized to:
- \(12 \ \ldots \ n \ -3n \ -3n-1 \ 3n-2 \ \ldots \ 2n+1 \ 3n \ -n \)

Bottom face can be generalized to:
- \(2n \ 2n-1 \ \ldots \ n+1 \ -(3n+1) \ 3n+2 \ 3n+3 \ \ldots \ 4n \ 3n+1 \ -(n+1) \)

To calculate world coordinates of vertices

\[
\delta = \frac{2 \pi}{n}
\]

So, outer circle \((i=1\ldots n)\)
- \(x_i = R \cos(i\delta) \)
- \(y_i = R \sin(i\delta) \)

Same for inner circle
HP-GL Output Format

- Hewlett-Packard Graphics Language (HP-GL) for output representation
 - **IN**: Initialize
 - **SP**: Set pen
 - **PU**: Pen up
 - **PD**: Pen down
 - **PA**: Plot absolute

(5000, 8000) (7000, 8000)
(3000, 2000) (5000, 2000)

HP-GL Output Format (cont’d)

- Letter ‘X’:
 - **IN; SP1**;
 - **PU; PA5000, 2000; PD; PA5000, 8000**;
 - **PU; PA3000, 2000; PD; PA7000, 8000**;
Chapter 7 Hidden-Face Elimination

- Back-Face Culling
- Coloring Individual Faces
- Painter’s Algorithm
- Z-Buffer Algorithm

Back-Face Culling

- Given a viewpoint invisible faces (back faces) should not be drawn
- Backface culling algorithm:
 - Draw cube:
 - Find center of world coordinate system
 - \(d = \rho \times \text{ImageSize/ObjectSize} \)
 - Viewing and perspective transformations
 - For each vertex of 6 faces:
 - Find screen coordinates of the vertex and store it
 - Set a different color
 - Use area2 to check if a face is visible, if so, fill it
 - This algorithm does not work for removing partially visible faces.
Coloring Individual Faces

To obtain a color code for a face:
- Predetermine direction of Sun, then its inner product with \(\mathbf{n} = (a, b, c) \) can determine what color to use for face \(ax + by + cz = h \)

\[
\begin{align*}
\text{Sun} & \quad \text{Viewing} \\
\text{direction} & \quad \text{direction} \\
\text{Eye} & \quad \text{n}
\end{align*}
\]

```
int colorCode(double a, double b, double c) {
    double inprod = a * sunX + b * sunY + c * sunZ;
    return (int)Math.round(((inprod - inprodMin)/inprodRange) * 255);
}
```

So we can get color code by calling
```
int cCode = obj.colorCode(a, b, c);
g.setColor(new color(cCode, cCode, 0)); // shades of yellow
```

Coloring Individual Faces (cont’d)

Assume a range of inner products
\[
inprodRange = inprodMax \ - \ inprodMin
\]

- int colorCode(double a, double b, double c)
 - { double inprod = a * sunX + b * sunY + c * sunZ;
 - return (int)Math.round(((inprod - inprodMin)/inprodRange) * 255);
 - }

So we can get color code by calling
```
int cCode = obj.colorCode(a, b, c);
g.setColor(new color(cCode, cCode, 0)); // shades of yellow
```
Painter’s Algorithm

Main idea:
- Display polygons in the order of their distances toward viewpoint

Features:
- Fast
- Working in most cases
- Not working in special cases

Steps:
- Compute eye and screen coordinates for whole 3D object (Obj3D.eyeAndScreen)
- Compute a, b, c, and h of $ax + by + cz = h$ for every polygon face (Obj3D.planeCoeff)
- Triangulate every polygon face (Polygon3D.triangulate)
- Decide color of each triangle (colorCode)
- Sort all triangles according to their Ze coordinates
- Display all triangles in their predetermined colors
Painter’s Algorithm (cont’d)

- Problem: fails to order polygons in certain cases

Z-Buffer Algorithm

- Z-coordinates denote distance from viewpoint
- Z-buffer as a large 2D array of canvas size, storing z-coordinates
- Two buffers used:
 - Frame buffer storing color values, initialized as background color
 - Z-buffer storing z value of each pixel, initialized to 0
Z-Buffer Algorithm (cont’d)

- Int pz; // face’s z at p(x, y)
- for (y=0; y<ymax; y++)
 - for (x=0; x<xmax; x++) {
 - putPixel(x, y, backgroundColor);
 - zbuff(x, y) = 0; }
- for each polygon face
 - for each pixel in polygon’s projection {
 - pz = polygon’s z-value at (x, y);
 - if (pz >= zbuff(x, y)) { // new point nearer
 - putPixel(x, y, polygon’s color at (x, y));
 - zbuff(x, y) = pz;
 - }
 - }

Optimized Z-Buffer Algorithm

- For each scan line
 - xl, xJ, xK ← 10^{30}
 - xI1, xJ1, xK1 ← 10^{30}
 - Work on BC, CA, and AB
- Get intersection points L and R
 - e.g. for each scan line between C and B
 - Find intersection R’(xR’, y)
 - xl, xI1 xR’
 - xL ← min(xl, xJ, xK)
 - xR ← max(xI1, xJ1, xK1)
- Draw line (L, R)
Optimized Z-Buffer Algorithm

```java
boolean leftmostValid = false;
int xLeftmost = 0;
for (int ix=xL; ix<=xR; ix++)
    { if (zi < buf[ix][iy]) // < means nearer
        { if (!leftmostValid)
            { xLeftmost = ix;
                leftmostValid = true;
            }
            buf[ix][iy] = (float)zi;
        }
        else
            { if (leftmostValid)
                { g.drawLine(xLeftmost, iy, ix-1, iy);
                    leftmostValid = false;
                }
                zi += dzdx;
            }
        if (leftmostValid)
            g.drawLine(xLeftmost, iy, xR, iy);
    }
```

Z-Buffer Algorithm (cont’d)

- To find $z_i (= 1/z)$ for each triangle ABC:
 - Consider plane $ax + by + cz = k$, to know how much z_i increases if the point moves 1 pixel up or to the right, then $zi = (k – ax – by)/c$ and
 $$\frac{\partial z_i}{\partial x} = -\frac{a}{c} \quad \frac{\partial z_i}{\partial y} = -\frac{b}{c}$$

- Based on centroid $D(x_D, y_D)$ to compute z_i:
 - $x_D = (xA + xB + xC)/3$;
 - $y_D = (yA + yB + yC)/3$;
 - $zD = (zAi + zBi + zCi)/3$;
 - $z_i = z_{Dx} + (y - y_D) \frac{\partial z}{\partial y} + (x - x_D) \frac{\partial z}{\partial x}$
Z-Buffer Algorithm (cont’d)

- Boundary problem:
 - P is on both triangles T₁ and T₂, it will be colored twice as both T₁’s and T₂’s colors.

```
/\s/s
P is on both triangles T₁ and T₂, it will be colored twice as both T₁’s and T₂’s colors.
```

- To make P counted once for T₁, use a factor of 1.01 in zᵢ:
 \[zᵢ = 1.01 \cdot zDi + (y - yD) \cdot dzdy + (xL - xD) \cdot dzdx \]

Z-Buffer Algorithm (cont’d)

- Problem with Painters algorithm no longer exist
Chapter 8 Fractals

- Introduction
- Koch Curves
- String Grammars
- Mandelbrot and Julia Sets

Introduction to Fractals

- Many aspects in nature repeat in patterns similar at different scales
- Self-similar structures can be modeled by Fractal geometry
- Fractals are useful in many applications, in science, technology, and computer generated art
Koch Curves

- Begin with a straight line and call it K_0;
- Divide each segment of K_n into 3 equal parts; and
- Replace the middle part by two sides of an equilateral triangle of the same length.

K_0

K_1

K_2

Interesting characteristics:

- Each segment increased in length by a factor of $4/3$ (K_{n+1} is $4/3$ as long as K_n, and K_i has the total length of $(4/3)^i$).
- When n is getting large, the curve still appears to have the same shape and roughness.
- When n becomes infinite, the curve has an infinite length, while occupying a finite region in the plane.
Koch Curves (cont’d)

- Pseudo-code:
 - If (n == 0) Draw a straight line;
 - Else
 - }
 - { Draw K^{n-1};
 - Turn left by 60°;
 - Draw K^{n-1};
 - Turn right by 120°;
 - Draw K^{n-1};
 - Turn left by 60°;
 - Draw K^{n-1};
 - }

Koch Snowflakes
Turtle Graphics

- Originated in Logo programming language, *turtle graphics* is a means of computer drawing using the concept of a turtle crawling over the drawing space with a pen attached to its underside.
- The drawing is always relative to the current position and direction of the turtle.

String Grammars

- Specification of a common pattern is called a *grammar*
- A string of characters defining a common pattern instructs the turtle to draw the pattern
- Most common character commands:
 - F - move forward distance D while drawing in current direction.
 - + - turn right through angle α.
 - – - turn left through angle α.
String Production Rule

- For Koch curves, \(F \rightarrow F F++F--F \)
- A string of characters defining a common pattern instructs the turtle to draw the pattern
- Most common character commands:
 - \(F \) - move forward distance \(D \) while drawing in current direction.
 - \(+ \) - turn right through angle \(\alpha \).
 - \(- \) - turn left through angle \(\alpha \).

Grammar Template

- \(\text{(axiom, F-string, f-string, X-string, Y-string, angle)} \)
- \(\text{axiom} \) from which turtle starts;
- \(\text{F-string} \) produces strings from \(F \) (turtle moves forward while drawing);
- \(\text{f-string} \) produces strings from \(f \) (turtle moves forward without drawing);
- \(\text{X-string} \) produces strings from \(X \) (turtle ignores);
- \(\text{Y-string} \) produces strings from \(Y \) (turtle ignores);
- \(\text{angle} \) at which turtle should turn.
Grammar Template

- Example curves:
 - Dragon curve:
 \[(X, F, nil, X+YF+, \ -FX–Y, 90)\]
 - Hilbert curve:
 \[(X, F, nil, \ -YF+XF+FY–, \ +XF–YFY–FX+, 90)\]
 - Sierpinski arrowhead:
 \[(YF, F, nil, YF+XF+Y, XF–YF–X, 60)\]

Example Curves

Dragon curves: 1st, 2nd, 3rd, 4th, 5th and 11th generations

Hilbert curve (5th generation) Sierpinski arrowhead (7th generation)
Islands

- \((F+F+F+F, \quad F+f−FF+F+FF+FF−F+F−FF−FF−Ff+FF−F−FF−Ff−FFF)\)

Branching

- turtle’s state - current position + direction
- two more character commands:
 - `[- store current state of turtle`
 - `] - restore turtle’s previously stored state`
Branching: Fractal Trees

- Left: \((F, F[+F][−F]F, nil, nil, nil, 25.7)\)
- Middle: \((X, FF, nil, F[+X]F[−X]+X, nil, 20.0)\)
- Right: \((F, FF[−F+F+F]+[F−F−F], nil, nil, nil, 22.5)\)

Mandelbrot and Julia Sets

- Investigates: what happens when one iterates a function endlessly
- Mandelbrot set uses a simple function
 \[z_0 = 0\]
 \[z_{n+1} = z_n^2 + c\ (c \text{ is a complex number})\]
- A sequence of values, called orbit:
 - \(z_0 = 0\)
 - \(z_1 = z_0^2 + c = c\)
 - \(z_2 = z_1^2 + c = c^2 + c\)
 - \(\ldots\)
Mandelbrot Set

- If orbit stays within a distance of 2 from the origin forever, \(c \) is said to be in Mandelbrot set
- If orbit diverges from the origin, \(c \) is not in the set.

Draw Mandelbrot Images

- Complex numbers are 2D!
- \(z = x + yi \) (\(x \) – real part, \(y \) – imaginary part) is displayed at position \((x, y)\)
- Distance:
 \[
 |z| = \sqrt{x^2 + y^2}
 \]
- We perform the test
 \[
 |z|^2 > 4
 \]
 to avoid computing square root
Mandelbrot Sets

Associated with every point in complex plane is a set similar to Mandelbrot set, called a Julia set.

Use the same iteration $z_{n+1} = z_n^2 + c$

Mandelbrot set can be used to select c for Julia set, it forms an index into Julia set.
Julia Sets (cont’d)

- We choose points near boundaries of Mandelbrot set as starting values z_0
- E.g. $c = -0.76 + 0.084i$, the point near top of the circle on the left of Mandelbrot set