Chapter 4 Classic Algorithms

- Bresenham’s Line Drawing
- Doubling Line-Drawing Speed
- Circles
- Cohen-Sutherland Line Clipping
- Sutherland–Hodgman Polygon Clipping
- Bézier Curves
- B-Spline Curve Fitting

Bresenham’s Line Drawing

A line-drawing (also called scan-conversion) algorithm computes the coordinates of the pixels that lie on or near an ideal, infinitely thin straight line.
Bresenham’s Line Drawing (cont’d)

- For lines \(-1 \leq \text{slope} \leq 1\), exactly 1 pixel in each column.
- For lines with other slopes, exactly 1 pixel in each row.
- To draw a pixel in Java, we define a method

```java
void putPixel(Graphics g, int x, int y)
{
    g.drawLine(x, y, x, y);
}
```

Basic Incremental Algorithm

- Simplest approach:
 - Slope \(m = \Delta y/\Delta x \)
 - Increment \(x \) by 1 from leftmost point (if \(-1 \leq m \leq 1\))
 - Use line equation \(y_i = x_i m + B \) and round off \(y_i \).
- But inefficient due to FP multiply, addition, and rounding
Basic Incremental Algorithm (cont’ed)

- Let’s optimize it:
 - \[y_{i+1} = mx_{i+1} + B = m(x_i + \Delta x) + B = y_i + m\Delta x \]
 - So it’s called incremental algorithm:
 - At each step, increment based on previous step

\[
(x, y) \\
(x, \text{round}(y)) \\
(x+1, \text{round}(y+m)) \\
(x+1, y+m)
\]

For \(-1 \leq m \leq 1\):
- int x;
- float y, m = (float)(yQ - yP)/(float)(xQ - xP);
- for (x = xP; x <= xQ; x++) {
 - putPixel(g, x, Math.round(y));
 - y = y + m;
}
- Because of rounding, error of inaccuracy is
 - \(-0.5 < y_{\text{exact}} - y \leq 0.5\)
- If \(|m| > 1\), reverse the roles of \(x\) and \(y\):
 - \[y_{i+1} = y_i + 1, \quad x_{i+1} = x_i + 1/m \]
- Need to consider special cases of horizontal, vertical, and diagonal lines
- Major drawback: one of \(x\) and \(y\) is float, so is \(m\), plus rounding.
Bresenham Line Algorithm

Let’s improve the incremental algorithm
- To get rid of rounding operation, make \(y \) an integer

\[
\begin{align*}
 d &= y - \text{round}(y), \text{ so } -0.5 < d \leq 0.5 \\
 \text{We separate } y\text{'s integer portion from its fraction portion} \\
 \intertext{int } x, y; \\
 \text{float } d = 0, \ m = (\text{float})(yQ - yP)/(\text{float})(xQ - xP); \\
 \text{for } (x= xP; x<=xQ; x++) \\
 \quad \text{putPixel}(g, x, y); \ d = d +m; \\
 \quad \text{if } (d > 0.5) \{y++; d--; \}
\end{align*}
\]
To get rid of floating types m and d, we
- double d to make it an integer, and
- multiply m by $xQ - xP$

We thus introduce a scaling factor
- $C = 2 \times (xQ - xP)$
- (why can we do this?)

So:
- $M = cm = 2(yQ - yP)$
- $D = cd$

We finally obtain a complete integer version of the algorithm (variables starting with lower case letters):
- `int x, y = yP, d = 0, dx = xQ - xP, c = 2 * dx, m = 2 * (yQ - yP);`
- `for (x=xP; x<=xQ; x++) {`
 - `putPixel(g, x, y);`
 - `d += m;`
 - `if (d >= dx) {y++; d -= c;}`
- `}`

Now we can generalize the algorithm to handle all slopes and different orders of endpoints
Doubling Line-Drawing Speed

- Bresenham algorithm:
 - Determines slope
 - Chooses 1 pixel between 2 based on \(d \)
- Double-step algorithm:
 - Halves the number of decisions by checking for next TWO pixels rather than 1

Double-Step Algorithm

- Patterns 1 and 4 cannot happen on the same line
Double-Step Algorithm (cont’d)

- For slope within \([0, \frac{1}{2})\):
 - Pattern 1: \(4dy < dx\)
 - Pattern 2: \(4dy \geq dx\) AND \(2dy < dx\)
 - Pattern 3: \(2dy \geq dx\)

- Algorithm:
 - Set \(d\) initially at \(4dy - dx\), check in each step
 - \(d < 0\): Pattern 1 \(d = d + 4dy\)
 - \(d \geq 0\), if \(d < 2dy\) Pattern 2 \(d = d + 4dy - 2dx\)
 - \(d \geq 2dy\) Pattern 3 \(d = d + 4dy - 2dx\)
 - \(x = x + 2\)

Circles

- How do we implement a circle-drawing method in Java
 - \texttt{drawCircle(Graphics g, int xC, int yC, int r)}

- A simplest way is
 - \(x = xC + r \cos \varphi\)
 - \(y = yC + r \sin \varphi\)
 - where
 - \(\varphi = i \times (i = 0, 1, 2, ..., n - 1)\)
 - for some large value of \(n\).

- But this method is time-consuming …
Circles (cont’d)

- According to circle formula
 - $x^2 + y^2 = r^2$
- Starting from P, to choose between y and $y-1$, we compare which of the following closer to r:
 - $x^2 + y^2$ and
 - $x^2 + (y-1)^2$

Circles (cont’d)

- To avoid computing squares, use 3 new variables:
 - $u = (x + 1)^2 - x^2 = 2x + 1$
 - $v = y^2 - (y - 1)^2 = 2y - 1$
 - $E = x^2 + y^2 - r^2$
- Starting at P
 - $x = 0$ and $y = r$, thus $u = 1$, $v = 2r - 1$ and $E = 0$
 - If $|E - v| < |E|$, then $y --$ which is the same as
 - $(E - v)^2 < E^2 \Rightarrow v(v - 2E) < 0$
 - v is positive, thus we simply test
 - $v < 2E$
Circles (cont’d)

- Java code for the arc PQ:
  ```java
  void arc8(Graphics g, int r)
  {
    int x = 0, y = r, u = 1, v = 2 * r - 1, e = 0;
    while (x <= y)
    {
      putPixel(g, x, y);
      x++; e += u; u += 2;
      if (v < 2 * e){y--; e -= v; v -= 2;}
    }
  }
  ```

Line Clipping

- Clipping endpoints
 - For a point \((x, y)\) to be inside clip rectangle defined by \(x_{\text{min}}/x_{\text{max}}\) and \(y_{\text{min}}/y_{\text{max}}\):
 - \(x_{\text{min}} \leq x \leq x_{\text{max}}\) AND \(y_{\text{min}} \leq y \leq y_{\text{max}}\)

- Brute-Force Approach
 - If both endpoints inside clip rectangle, trivially accept
 - If one inside, one outside, compute intersection point
 - If both outside, compute intersection points and check whether they are interior

- Inefficient due to multiplication and division in computing intersections
Cohen-Sutherland Algorithm

- Based on “regions”, more line segments could be trivially rejected
- Efficient for cases
 - Most line segments are inside clip rectangle
 - Most line segments are outside of clip rectangle

Cohen-Sutherland Algorithm (cont’d)

- Check for a line
 1. If Outcode_A = Outcode_B = 0000, trivially accept
 2. If Outcode_A AND Outcode_B ≠ 0, trivially reject
 3. Otherwise, start from outside endpoint and find intersection point, clip away outside segment, and replace outside endpoint with intersection point, go to (1)

- Order of boundary from outside:
 - Top ⇒ bottom ⇒ right ⇒ left
Cohen-Sutherland Algorithm (cont’d)

Consider line AD:
- Outcode\(_A\) = 0000, Outcode\(_D\) = 1001, neither accept nor accept
- Choose D, use top edge to clip to AB
- Find Outcode\(_B\) = 0000, according to (1), accept AB

Consider line EI:
- Outcode\(_E\) = 0100, Outcode\(_I\) = 1010
- Start from E, clip to FI, neither (1) nor (2)
- Since Outcode\(_F\) = 0000, choose I
- Use top edge to clip to FH
- Outcode\(_H\) = 0010, use right edge to clip to FG
- According to (1), accept FG

Same result if start from I
Polygon Clipping

- **Sutherland-Hodgman Algorithm**: divide & conquer
 - General – a polygon (convex or concave) can be clipped against any convex clipping polygon

Sutherland-Hodgman Algorithm

- Clip the given polygon against one clip edge at a time
Sutherland-Hodgman Algorithm (cont’d)

- The algorithm clips every polygon edge against each clipping line
- Use an output list to store newly clipped polygon vertices
- With each polygon edge, 1 or 2 vertices are added to the output list

Output vertices I, J, K, L, F, and A,
Bézier Curves

- 2 endpoints + 2 control points -> a curve segment
 - P_0 and P_3 are endpoints
 - P_1 and P_2 are control points

Bézier Curves (cont’d)

- C_1 is the point for drawing the curve
Bézier Curves (cont’d)

Analytically
- \(A(t) = P_0 + t^*P_0P_1 \) (0 ≤ t ≤ 1, t may be considered time)
- \(A(t) = P_0 + t(P_1 - P_0) = (1 - t)P_0 + t^*P_1 \)

Similarly
- \(B(t) = (1 - t)P_2 + t^*P_3 \)
- \(C(t) = (1 - t)P_1 + t^*P_2 \)
- \(A_1(t) = (1 - t)A + t^*C \)
- \(B_1(t) = (1 - t)C + t^*B \)
- \(C_1(t) = (1 - t)A_1 + t^*B_1 \)

So
- \(C_1(t) = (1 - t)((1 - t)A + t^*C) + t^*(1 - t)C + t^*B) \)
- \[C_1(t) = (1 - t)^3P_0 + 3(1 - t)^2t^*P_1 + 3t^2(1 - t)P_2 + t^3P_3 \]

Bézier Curves (cont’d)

```java
void bezier1(Graphics g, Point2D[] p)
{
    int n = 200;
    float dt = 1.0F/n, x = p[0].x, y = p[0].y, x0, y0;
    for (int i=1; i<=n; i++)
    {
        float t = i * dt, u = 1 - t,
        tuTriple = 3 * t * u,
        c0 = u * u * u,
        c1 = tuTriple * u,
        c2 = tuTriple * t,
        c3 = t * t * t;
        x0 = x; y0 = y;
        x = c0*p[0].x + c1*p[1].x + c2*p[2].x + c3*p[3].x;
        y = c0*p[0].y + c1*p[1].y + c2*p[2].y + c3*p[3].y;
        g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
    }
}
```
Further manipulation:

$$C_1(t) = (-P_0 + 3P_1 - 3P_2 + P_3)t + (P_0 - 2P_1 + P_2)t - 3(P_1 - P_0)t + P_0$$

void bezier2(Graphics g, Point2D[] p)
{
 int n = 200;
 float dt = 1.0F / n,
 cx3 = -p[0].x + 3 * (p[1].x - p[2].x) + p[3].x,
 cy3 = -p[0].y + 3 * (p[1].y - p[2].y) + p[3].y,
 cx2 = 3 * (p[0].x - 2 * p[1].x + p[2].x),
 cy2 = 3 * (p[0].y - 2 * p[1].y + p[2].y),
 cx1 = 3 * (p[1].x - p[0].x),
 cy1 = 3 * (p[1].y - p[0].y),
 cx0 = p[0].x, cy0 = p[0].y,
 x = p[0].x, y = p[0].y, x0, y0;
 for (int i=1; i<=n; i++)
 {
 float t = i * dt;
 x0 = x; y0 = y;
 x = ((cx3 * t + cx2) * t + cx1) * t + cx0;
 y = ((cy3 * t + cy2) * t + cy1) * t + cy0;
 g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
 }
}
Bézier Curves (cont’d)

- When two Bézier curves $a (P_0P_3)$ and $b (Q_0Q_3)$ are combined, to make the connecting point smooth,
 - $C_{1a}'(1) = C_{1b}'(0)$
 - i.e. the final velocity of curve a equals the initial velocity of curve b
 - The condition is guaranteed if $P_3 (=Q_0)$ is the midpoint of line P_2Q_1

![Bézier Curves Diagram](image)

B-Spline Curve Fitting

- Number of control points = number of curve segments + 3

![B-Spline Curve Fitting Diagram](image)
B-Spline Curve Fitting (cont’d)

- For example, following curve consists of 5 segments, 8 control points (left 2 repeated)
- Smooth connections between curve segments

\[
B(t) = \frac{1}{6} \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}
\]

B(t) = \frac{1}{6} \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -P_0 + 3P_1 - 3P_2 + P_3 \\ 3P_0 - 6P_1 + 3P_2 \\ -3P_0 + 3P_2 \\ P_0 + 4P_1 + P_2 \end{bmatrix}
B-Spline Curve Fitting (cont’d)

\[B(t) = \frac{1}{6}(-P_0 + 3P_1 - 3P_2 + P_3)t^3 + \frac{1}{2}(P_0 - 2P_1 + P_2)t^2 + \frac{1}{2}(-P_0 + P_2)t + \frac{1}{6}(P_0 + 4P_1 + P_2) \]

void bspline(Graphics g, Point2D[] p)
{
 int m = 50, n = p.length;
 float xA, yA, xB, yB, xC, yC, xD, yD,
 a0, a1, a2, a3, b0, b1, b2, b3, x=0, y=0, x0, y0;
 boolean first = true;
 for (int i=1; i<n-2; i++)
 {
 xA=p[i-1].x; xB=p[i].x; xC=p[i+1].x; xD=p[i+2].x;
 yA=p[i-1].y; yB=p[i].y; yC=p[i+1].y; yD=p[i+2].y;
 a3=(-xA+3*(xB-xC)+xD)/6; b3=(-yA+3*(yB-yC)+yD)/6;
 a2=(xA-2*xB+xC)/2; b2=(yA-2*yB+yC)/2;
 a1=(xC-xA)/2; b1=(yC-yA)/2;
 a0=(xA+4*xB+xC)/6; b0=(yA+4*yB+yC)/6;
 for (int j=0; j<=m; j++)
 {
 x0 = x; y0 = y;
 float t = (float)j/(float)m;
 x = ((a3*t+a2)*t+a1)*t+a0; y = ((b3*t+b2)*t+b1)*t+b0;
 if (first) first = false;
 else g.drawLine(iX(x0), iY(y0), iX(x), iY(y));
 }
 }
}
Chapter 5 Perspective

- Basic concepts
- Viewing Transformation
- Perspective Transformation
- A Cube Example
- Some Useful Classes
- Wire-Frame Drawings

Perspective Concepts

- Viewpoint
- Parallel (orthographic) projection
- Perspective projection
Perspective Concepts (cont’d)

World coordinates \((x_w, y_w, z_w)\) – 3D

Viewing transformation

Eye coordinates \((x_e, y_e, z_e)\) – 3D

Perspective transformation

Screen coordinates \((X, Y)\) – 2D

Viewing Transformation

[Diagram showing the transformation process from world coordinates to screen coordinates]
Viewing Transformation (cont’d)

\[T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-x_E & -y_E & -z_E & 1
\end{bmatrix} \]

Viewing Transformation (cont’d)

\[R_z = \begin{bmatrix}
\cos(-\theta - 90^\circ) & \sin(-\theta - 90^\circ) & 0 & 0 \\
-\sin(-\theta - 90^\circ) & \cos(-\theta - 90^\circ) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
-\sin \theta & -\cos \theta & 0 & 0 \\
\cos \theta & -\sin \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \]
Viewing Transformation (cont’d)

$$R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-\varphi) & \sin(-\varphi) & 0 \\ 0 & -\sin(-\varphi) & \cos(-\varphi) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi & 0 \\ 0 & \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$V = TR_x R_x = \begin{bmatrix} -\sin \theta & -\cos \varphi \cos \theta & \sin \varphi \cos \theta & 0 \\ \cos \theta & -\cos \varphi \sin \theta & \sin \varphi \sin \theta & 0 \\ 0 & \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & -\rho & 1 \end{bmatrix}$$

Perspective Transformation

Changing r can change perspective. It becomes parallel projection if $r = \infty$.
Due to similar triangles EQP' and EOP:
\[
\frac{P'Q}{EQ} = \frac{PR}{ER}
\]

Applied to X-x_e and Y-y_e relationship:
\[
\frac{X}{d} = \frac{x}{-z} \quad X = -d \cdot \frac{x}{z} \quad Y = -d \cdot \frac{y}{z}
\]

\[
\frac{d}{\rho} = \frac{\text{image size}}{\text{object size}}
\]

A Cube Example

- Draw a cube in perspective, given the viewing distance and object size.
A Cube Example (cont’d)

- Implementation
 - Class *Obj* contains 3D data and transformations
 - World coordinates for the cube – 3D
 - *ObjectSize* = SquareRoot(12)
 - Viewing distance *r* = 5 * *ObjectSize*
 - Prepare matrix elements
 - Transformations (viewing and perspective)
 - Draw cube (in paint)
 - Find center of world coordinate system
 - *d* = *r* *ImageSize/ObjectSize*
 - Transformations
 - Draw cube edges according to screen coordinates

Some Useful Classes

- *Input*: for file input operations
- *Obj3D*: to store 3D objects
- *Tria*: to store triangles by their vertex numbers
- *Polygon3D*: to store 3D polygons
- *Canvas3D*: an abstract class to adapt the Java class *Canvas*
- *Fr3D*: a frame class for 3D programs
Wire-Frame Drawings

Using all the previous classes, implement the following: