Sensitivity to the touch of the drawing tool to the drawing surface and the ability to
discriminate subtle changes in the marks as the tool is “drawn” over the surface are the most important components of the drawing process. These are very basic sensitivities but ones that, because of the refinement and energy they require, are both sophisticated and challenging. It is challenging to invest extraordinary concentration in an activity that is generally perceived as utilitarian. Focusing attention on something as routine as using a hand-held tool to make marks on paper requires that you temporarily detach yourself from the distractions of your overstimulating environment and devote your attention to the simple experience of direct sensory awareness. Drawing demands an active and purposeful participation like that which is alluded to in the timeless Roman admonition carpe diem (seize the day). This phrase is a concise exhortation to actively explore, experience, and embrace each unfolding moment. Such focused concentration on immediate experience lies at the very heart of the drawing process.

Drawing relies on heightened sensitivity toward tactile and visual experience in ways that are simple and routine. It is important that you understand from the outset that the effectiveness of a drawing is, first and foremost, determined by the richness and variety of the marks from which it is made. Awareness of, sensitivity to and control over the mark making characteristics of the drawing tool and the surface texture of the paper are what determine the vitality of a drawing. The amount of visual interest generated by a drawing depends primarily on the energy, clarity, variation, rhythm, and immediacy of its constituent marks. Marks first make meaning by preserving, documenting, and communicating the sensory experience of the act of drawing itself. The very first level of content in a drawing is always in the marks themselves.

Line variation (changes in thickness, darkness, and direction) is capable of producing very real physical sensation in the observer. The human eye is drawn to smoothly flowing lines that exhibit variation in thickness, range of value intensity, and direction of movement. The more the lines change, the more intriguing they become. When that same variety of line is skillfully applied to a representational image, the pure joy of the optical experience is enhanced by the thrill of object recognition.
Line, possibly because it is so simple, is among the most direct and effective visual tools for triggering a sensation of movement in our mind, which is then transferred to our muscles and joints. As our eyes move along a line, we internalize very real sensations of movement, speed, energy, acceleration, weight, rhythm, and texture as well as the excitement and pleasure associated with those sensations. It is these very real sensations … that we are referring to when we speak of “feeling” in a drawing.

Chapter Two: Materials

p. 8
Charcoal is believed to be the oldest drawing medium, and today it comes in a variety of forms. **Stick charcoal** is composed of the dry carbon that remains after wood is burned. It is a dry, crumbly material that leaves marks easily and comes off most surfaces just as easily. The highest grade of stick charcoal is vine and willow charcoal. It comes in thin to thick sticks with a smooth, even texture. This material is used for sketching and lends itself to quick gestures and subtle gradations. However its impermanence and its lack of a deep black are to be kept in consideration when used as a drawing tool.

p. 9-11
Compressed charcoal is made from ground charcoal that is mixed with varying amounts of clay and a binder to hold it together. The more clay that is added, the harder the compressed charcoal becomes. The binder helps the pigment adhere to the surface of the paper and adds richness to the black. Compressed charcoal comes in wooden pencils, compressed cylinders, and compressed blocks.

Graphite (from the Greek *graphein*: “to draw/write”) was discovered in England in 1564. It was originally believed to be a type of lead and thus the term lead pencil. This popular misnomer has survived for more than four hundred and fifty years. Graphite was not popularized as a drawing tool until 1795, when it was manufactured as wooden-barreled pencils by a Frenchman, Nicholas Conte. Graphite, like charcoal, is mixed with varying amounts of clay to create differing degrees of hardness and darkness. Pencils range from 9B (softest and darkest) through the midrange of HB and F to the hard range, with 10 H being the hardest and lightest. Graphite comes in solid, unwrapped, rectangular sticks, in woodless cylindrical pencils, and in powdered form that can be rubbed directly onto the drawing surface.

Conte crayons were also invented by Nicholas Conte and are made by compressing a pigment and gum binder paste into small rectangular sticks. These crayons come in black, white, gray, reddish-orange, dark brown, and a dark reddish-brown. The Conte crayon is a very smooth and versatile tool.
Paper comes in wide variety of sizes, weights, and surfaces. It’s made from cellulose fibers from either cotton or wood. Rag paper, made from cotton fibers is the most durable and versatile and is the most permanent paper when used with non-acidic drawing tools and kept from chemical pollution. Papers made from wood pulp are less expensive and can have excellent permanency ratings if chemically treated during manufacture. Newsprint, the least expensive paper, is made from untreated wood pulp and is highly impermanent. Its price and its surface make it a good paper to use when you are starting out but you must remember that the acids in the fibers cause the paper to yellow and deteriorate fairly quickly when it is exposed to light and air. Newsprint has a warm tone and can be smooth or moderately rough.

p. 11

The weight of a paper refers to the measured weight of five hundred (a ream) 17 x 22 inch sheets of a particular paper. It can vary from thirteen pounds (lightweight ink jet paper) to four hundred pounds (heavy watercolor).

The surface of the paper can range from very smooth to extremely rough with a full range in between. Tooth is the surface feel of paper. The more tooth a paper has, the rougher it feels to the touch. Cold-pressed papers have moderate surface texture and absorbency and accept the widest range of media. Rough paper has a pronounced surface texture and is most commonly used with watercolor or ink washes. Hot-pressed papers are hard and smooth and best suited to detail work with pen or hard pencil. They are not very absorbent.

p.12

The designation bond paper refers to an assortment of writing, ink jet, and drawing papers that vary in weight, rag content, and surface. They are all generally cold-pressed. They all work well with pen-and-ink drawing, and those designated as drawing paper (slightly rougher surface) are receptive to most dry media.

Bristol papers are manufactured by bonding together two or more sheets of single-ply bond paper. Bristol can be made from rag but is often made from wood pulp that has been chemically treated for permanence and whiteness. The surface ranges from hot-pressed to cold-pressed.

Charcoal paper (pastel paper) is manufactured with a pronounced tooth or texture and is designed for soft charcoal, pastel, crayon, and chalk.
Illustration board refers to the gluing of drawing papers to a rigid backing. Like the papers themselves, illustration board varies in quality and surface. Many papers combine rag and chemically treated wood fiber in varying percentages.

p. 13

Erasers similar to those we use today became popular in the late eighteenth century. Surprisingly, this was almost two hundred years after it had been discovered that rubber could be used to remove pencil marks from paper. Before this time the most common eraser was crustless white bread.

Modern erasers contain a variety of ingredients, including rubber, synthetic rubber, vinyl, pumice, and fractice. Fractice is vulcanized oil that gives most erasers the critically important capacity to crumble as they are used.

Kneaded (putty) erasers work particularly well with charcoal on newsprint. A kneaded eraser absorbs the charcoal particles and leaves no residue. Because they don't crumble or wear away, they can last a long time. A particularly attractive attribute is that they can be easily shaped for precise erasing. However, kneaded erasers do not work well when erasing large areas. When the surface of this eraser becomes covered in charcoal, kneading it like dough will usually restore its capacity to absorb more charcoal. A kneaded eraser will eventually become exhausted, unable to absorb any more charcoal, in which case it will smear and actually make marks instead of erasing them.