Planning Demand and Supply in a Supply Chain

Forecasting and Aggregate Planning

Chapter 8
Aggregate Planning (Ag-gregate: Past part. of Ad-gregare: Totaled)

- If the actual is different than the plan, why bother sweating over detailed plans

- Aggregate planning: General plan for our frequency decomposition
 - Combined products = aggregate product
 - Short and long sleeve shirts = shirt
 - Single product
 - AC and Heating unit pipes = pipes at Lennox Iowa plant
 - Pooled capacities = aggregated capacity
 - Dedicated machine and general machine = machine
 - Single capacity
 - E.g. SOM has 100 instructors
 - Time periods = time buckets
 - Consider all the demand and production of a given month together
 - When does the demand or production take place in a time bucket?
 - Increase the number of time buckets; decrease the bucket length.
Fundamental tradeoffs in Aggregate Planning

Capacity: Regular time, Over time, Subcontract?
Inventory: Backlog / lost sales, combination: Customer patience?

Basic Strategies

- **Chase (the demand) strategy;** produce at the instantaneous demand rate
 - fast food restaurants
- **Level strategy;** produce at the rate of long run average demand
 - swim wear
- **Time flexibility;** high levels of workforce or capacity
 - machining shops, army
- **Deliver late strategy**
 - spare parts for your Jaguar
Matching the Demand

- Use inventory
- Use delivery time
- Use capacity

Adjust the capacity to match the demand

- Which is which?
 Level
 Deliver late
 Chase
 Time flexibility
Capacity Demand Matching
Inventory/Capacity tradeoff

◆ **Level strategy:** Leveling capacity forces inventory to build up in anticipation of seasonal variation in demand

◆ **Chase strategy:** Carrying low levels of inventory requires capacity to vary with seasonal variation in demand or enough capacity to cover peak demand during season
Case Study: Aggregate planning at Red Tomato

- Farm tools:
 - Shovels
 - Spades
 - Forks

Same characteristics?

Generic tool, call it Shovel

Aggregate by similar characteristics
Aggregate Planning at Red Tomato Tools

80 workers are available on Jan 1.
1000 shovels available on Jan 1.

<table>
<thead>
<tr>
<th>Month</th>
<th>Demand Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1,600</td>
</tr>
<tr>
<td>February</td>
<td>3,000</td>
</tr>
<tr>
<td>March</td>
<td>3,200</td>
</tr>
<tr>
<td>April</td>
<td>3,800</td>
</tr>
<tr>
<td>May</td>
<td>2,200</td>
</tr>
<tr>
<td>June</td>
<td>2,200</td>
</tr>
<tr>
<td>Total</td>
<td>16,000</td>
</tr>
</tbody>
</table>
Aggregate Planning

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>$10/unit</td>
</tr>
<tr>
<td>Inventory holding cost</td>
<td>$2/unit/month</td>
</tr>
<tr>
<td>Marginal cost of a backorder</td>
<td>$5/unit/month</td>
</tr>
<tr>
<td>Hiring and training costs</td>
<td>$300/worker</td>
</tr>
<tr>
<td>Layoff cost</td>
<td>$500/worker</td>
</tr>
<tr>
<td>Labor hours required</td>
<td>4 hours/unit</td>
</tr>
<tr>
<td>Regular time cost</td>
<td>$4/hour</td>
</tr>
<tr>
<td>Over time cost</td>
<td>$6/hour</td>
</tr>
<tr>
<td>Max overtime hrs per employee per month</td>
<td>10 hours</td>
</tr>
<tr>
<td>Cost of subcontracting</td>
<td>$30/unit</td>
</tr>
<tr>
<td>Revenue</td>
<td>$40/unit</td>
</tr>
</tbody>
</table>

What is the cost of production per tool? That is materials plus labor.

Overtime production is more expensive than subcontracting.

What is the saving achieved by producing a tool in house rather than subcontracting?
1. Aggregate Planning (Decision Variables)

\[W_t = \text{Number of employees in month } t, \ t = 1, \ldots, 6 \]
\[H_t = \text{Number of employees hired at the beginning of month } t, \ t = 1, \ldots, 6 \]
\[L_t = \text{Number of employees laid off at the beginning of month } t, \ t = 1, \ldots, 6 \]
\[P_t = \text{Production in units of shovels in month } t, \ t = 1, \ldots, 6 \]
\[I_t = \text{Inventory at the end of month } t, \ t = 1, \ldots, 6 \]
\[S_t = \text{Number of units backordered at the end of month } t, \ t = 1, \ldots, 6 \]
\[C_t = \text{Number of units subcontracted for month } t, \ t = 1, \ldots, 6 \]
\[O_t = \text{Number of overtime hours worked in month } t, \ t = 1, \ldots, 6 \]

Did we aggregate production capacity?
2. Objective Function:

\[
\text{Min } \sum_{t=1}^{6} 4 \times 8 \times 20 \times W_t + \sum_{t=1}^{6} 300 H_t + \sum_{t=1}^{6} 500 L_t + \sum_{t=1}^{6} 6 O_t + \sum_{t=1}^{6} 2 I_t + \sum_{t=1}^{6} 5 S_t + \sum_{t=1}^{6} 10 P_t + \sum_{t=1}^{6} 30 C_t
\]

3. Constraints

- **Production** (in hours) for each month cannot exceed capacity (in hours)

\[
4P_t \leq 8 \times 20 W_t + O_t \quad \text{or} \quad 40 W_t + O_t / 4 - P_t \geq 0, \quad \text{for } t = 1, \ldots, 6.
\]

- **Workforce size for each month is based on hiring and layoffs**

\[
W_t = W_{t-1} + H_t - L_t, \quad \text{or} \quad W_t - W_{t-1} - H_t + L_t = 0 \quad \text{for } t = 1, \ldots, 6, \quad \text{where } W_0 = 80.
\]
3. Constraints

- Inventory balance for each month

\[I_{t-1} + P_t + C_t + S_t = D_t + S_{t-1} + I_t, \]
\[I_{t-1} + P_t + C_t - D_t - S_{t-1} - I_t + S_t = 0, \]

for \(t = 1, \ldots, 6 \), where \(I_0 = 1,000 \), \(S_0 = 0 \) and \(I_6 \geq 500 \).
3. Constraints

- **Overtime for each month**

\[O_t \leq 10 W_t \text{ or } 10 W_t - O_t \geq 0 \text{ for } t = 1, ..., 6. \]
Execution

- Solve the formulation, see Table 8.3
 - Total cost=$422.275K, total revenue=$640K

- Apply the first month of the plan
- Delay applying the remaining part of the plan until the next month
- Rerun the model with new data next month

- This is called **rolling horizon execution**
Aggregate Planning at Red Tomato Tools

This solution was for the following demand numbers:

<table>
<thead>
<tr>
<th>Month</th>
<th>Demand Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1,600</td>
</tr>
<tr>
<td>February</td>
<td>3,000</td>
</tr>
<tr>
<td>March</td>
<td>3,200</td>
</tr>
<tr>
<td>April</td>
<td>3,800</td>
</tr>
<tr>
<td>May</td>
<td>2,200</td>
</tr>
<tr>
<td>June</td>
<td>2,200</td>
</tr>
<tr>
<td>Total</td>
<td>16,000</td>
</tr>
</tbody>
</table>

What if demand fluctuates more?
Increased Demand Fluctuation

<table>
<thead>
<tr>
<th>Month</th>
<th>Demand Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1,000</td>
</tr>
<tr>
<td>February</td>
<td>3,000</td>
</tr>
<tr>
<td>March</td>
<td>3,800</td>
</tr>
<tr>
<td>April</td>
<td>4,800</td>
</tr>
<tr>
<td>May</td>
<td>2,000</td>
</tr>
<tr>
<td>June</td>
<td>1,400</td>
</tr>
<tr>
<td>Total</td>
<td>16,000</td>
</tr>
</tbody>
</table>

Total costs=$432.858K.

16000 units of total production as before why extra cost?

With respect to $422.275K of before.
Summary

- Qualitative strategies of matching demand and supply
- Quantitative methods
Material Requirements Planning

- Master Production Schedule (MPS)
- Bill of Materials (BOM)
- MRP explosion

Advantages
- Disciplined database
- Component commonality

Shortcomings
- Rigid lead times
- No capacity consideration
Optimized Production Technology

- Focus on bottleneck resources to simplify planning
- Product mix defines the bottleneck(s)?
- Provide plenty of non-bottleneck resources.
- Shifting bottlenecks
Just in Time production

- Focus on timing
- Advocates pull system, use Kanban
- Design improvements encouraged
- Lower inventories / set up time / cycle time
- Quality improvements
- Supplier relations, fewer closer suppliers, Toyota city

- JIT philosophically different than OPT or MRP, it is not only a planning tool but a continuous improvement scheme