Capacity Allocation

Outline

◆ Two-class allocation
◆ Multiple-class allocation
◆ Demand dependence
◆ Bid prices
Objectives

- Profit maximization for all firms
- Revenue maximization for firms with fixed (sunk) costs
- Cost minimization for firms with fixed revenues
 - Supply chains with established, given prices
- Market share maximization for firms strategically sacrificing the current profit to achieve higher future periods
 - Amazon in the mid 2010s
 - American airlines response to the competitor on DFW ↔ FRA leg in the summer of 2018
- Asset utilization maximization for justifying investment into assets
 - A nonprofit hospital chain seeking state funding for a new building
Booking Limits for 2 Fare Classes

Only one decision variable: \(b = b_2 \)
- Second class has booking limit \(b \)
- The first class has protection level of \(C-b \)

Demands for
- Full-fare class \(d_f \) whose cumulative density is \(F_f \);
- Discount fare class \(d_d \) whose cumulative density is \(F_d \).

Prices for
- Full-fare class \(p_f \);
- Discount fare class \(p_d \).
2-class Problem
Increasing the Booking Limit

\[F_d(b): \text{No second class is rejected with } b \text{ or } b+1 \]
Remaining capacity for the first class is the same
\[d_d \leq b \] discount demand
too low to be limited

\[b \text{ up by 1} \]

\[d_d > b \]
\[1 - F_d(b): \text{Remaining capacity for the first class is less by 1} \]
\[d_f \leq C-b \]
\[F_f(C - b): \text{Discount fare class accepted because of } b \leftarrow b + 1 \]
\[p_d - 0 > 0 \]

\[d_f > C-b \]
\[1 - F_f(C - b): \text{Full-fare class rejected because of } b \leftarrow b + 1 \]
\[p_d - p_f < 0 \]

Marginal effect on revenue

\[0 - 0 = 0 \]

\[b \text{ keep constant} \]

Expected marginal effect on revenue

\[= F_d(b)(0) + [1 - F_d(b)] \left[[1 - F_f(C - b)](p_d - p_f) + F_f(C - b)p_d \right] \]
\[= [1 - F_d(b)]\left[p_d - [1 - F_f(C - b)]p_f \right] \]
\[= [1 - F_d(b)]p_f \left[F_f(C - b) - \left(1 - \frac{p_d}{p_f}\right)\right] \]
2 Fare Classes

Booking Limit and Protection Level

The critical term is $F_f(C - b) - \left(1 - \frac{p_d}{p_f}\right)$.

$F_f(C - b)$ decreases as b increases because F_f is a cumulative density and increases in its argument.

If $b = 0$ and $F_f(C - [b = 0]) \leq \left(1 - \frac{p_d}{p_f}\right)$, set $b = 0$.

In this case, the discount price is very low so it is not worth opening up the discount class.

For any b, increase b as long as $F_f(C - b) > \left(1 - \frac{p_d}{p_f}\right)$.

For a continuous full fare demand distribution,

$$C - b^* = F_f^{-1}\left(1 - \frac{p_d}{p_f}\right)$$

and $b^* \leq C$.

$$b^* = \max\{C - F_f^{-1}\left(1 - \frac{p_d}{p_f}\right), 0\}$$

$$y^* = C - b^* = C - \max\{C - F_f^{-1}\left(1 - \frac{p_d}{p_f}\right), 0\}$$

$$= C + \min\{-C + F_f^{-1}\left(1 - \frac{p_d}{p_f}\right), 0\}$$

$$= \min\{F_f^{-1}\left(1 - \frac{p_d}{p_f}\right), C\}$$

Or $\frac{p_d}{p_f} = P(d_f > y^*)$.
2 Fare Classes
Protection Level with Uniform Demand

Suppose that the first class (full-fare) demand is uniform between 20 and 40 seats on a flight. Moreover, first class passengers pay $1000, while the discount fare is $300.
What are booking limits for discount fare if the plane has $C = 100$ or $C = 30$ seats?

Protection level y first:

$$F_f(x) = \frac{x-20}{20} \text{ for } 20 < x < 40.$$
$$F_f^{-1}(u) = 20 + 20u \text{ for } 0 < u < 1.$$
$$F_f^{-1}\left(1 - \frac{p_d}{p_f}\right) = F_f^{-1}\left(1 - \frac{300}{1000}\right) = 34.$$

If capacity=100, booking limit=100-34=66 for the discount class. If capacity=30, booking limit=\((30-34)^+\)=0 for the discount class.
2 Fare Classes
Protection Level with Normal Demand

Suppose that the first class (full-fare) class demand is normal with mean 30 seats and standard deviation 5. Moreover, first class passengers pay $1000, while the discount fare is $300.

What are booking limits for discount fare if the plane has $C = 100$ or $C = 30$ seats?

Standard normal cumulative distribution $\Phi(z)$.

$$\Phi_z^{-1}\left(\frac{7}{10}\right) = \text{norminv}(0.7, \text{mean } = 0, \text{stdev } = 1)$$

$$= 0.52 = z.$$

Protection level = $\text{mean } + z \times \text{stdev } = 30 + (0.52)5 = 32.6$.

Or use $\text{norminv}(0.7, \text{mean } = 30, \text{stdev } = 5) = 32.6$.

Let us round up the protection level to 33.

If capacity=100, booking limit=100-33=67 for the discount class.

If capacity=30, booking limit=(30-33)^+ = 0 for the discount class.
Multiple Fare Classes
Nested Protection Levels

- Fare classes indexed by $j=1,2, \ldots, n$. $j=1$ is the highest class, while $j=n$ is the lowest class.
- Protection level y_i for class i protects future reservations or classes $j=\{1,2, \ldots, i\}$.

Protection levels

<table>
<thead>
<tr>
<th>Periods</th>
<th>n</th>
<th>$n-1$</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Demands</td>
<td>d_n</td>
<td>d_{n-1}</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
</tr>
<tr>
<td>Monotone Prices</td>
<td>$p_n < p_{n-1}$</td>
<td>$p_3 < p_2 < p_1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-wise Separated Bookings</td>
<td>x_n</td>
<td>x_{n-1}</td>
<td>x_3</td>
<td>x_2</td>
<td>x_1</td>
</tr>
</tbody>
</table>
Multiple Fare Classes
Increasing the Booking Limit

- **$F_3(b_3)$**: No third class is rejected with b_3 or b_3+1
 - Remaining capacity for first/second class is the same

 - $d_3 \leq b_3$
 - b_3 up by 1
 - 1st class rejected because of $b_3 \leftarrow b_3 + 1$
 - $p_3 - p_1 < 0$
 - 2nd class rejected because of $b_3 \leftarrow b_3 + 1$
 - $p_3 - p_2 < 0$
 - Low 1st-2nd class demand
 - neither rejected
 - $p_3 - 0 > 0$

 - $d_3 > b_3$
 - b_3 keep constant
 - 1st class rejected because of $b_3 \leftarrow b_3 + 1$
 - $p_3 - p_1 < 0$

- **$1 - F_3(b_3)$**: Sell 1 more to 3rd class
 - Remaining capacity for 1st-2nd classes is less by 1

- **b_3 limits 3rd class to keep space for 1st-2nd classes**

Challenge: Computing the probability of 1st or 2nd class rejection by increasing the booking limit of the third class.

Marginal effect on revenue

- $0 - 0 = 0$
- $p_3 - p_1 < 0$
- $p_3 - p_2 < 0$
- $p_3 - 0 > 0$

- 0
Expected Marginal Seat Revenue (EMSR-a)
Version-a Heuristic: Protection Level Decomposition

- In period 3, when accepting bookings for class 3, protect class 1 and class 2.
- Let $y_{1,3}$ and $y_{2,3}$ be the protection levels of first and second classes against the third class.
- We can set

 $$y_{1,3} = F_1^{-1} \left(1 - \frac{p_3}{p_1}\right) \quad \text{and} \quad y_{2,3} = F_2^{-1} \left(1 - \frac{p_3}{p_2}\right)$$

- The protection level for both first and second classes while booking for class 3 is

 $$y_2 = y_{1,3} + y_{2,3} \quad \text{← Computation allotment-like but execution is still nested}$$

- In general,

 $$y_i = y_{1,i+1} + y_{2,i+1} + \ldots + y_{i,i+1} = \sum_{j=1}^{i} y_{j,i+1}$$

 where $y_{j,i+1}$ is the protection level of class j from class $i+1$. That is,

 $$y_{j,i+1} = F_j^{-1} \left(1 - \frac{p_{i+1}}{p_j}\right) \quad \text{or} \quad \frac{p_{i+1}}{p_j} = P(d_j > y_{j,i+1})$$

- Protect class j more against class $i+1$ if
 - Class j demand is larger
 - Class j price is larger
Expected Marginal Seat Revenue (EMSR-b)
Version-b Heuristic: Remaining Demand Aggregation

- In period 3, when accepting bookings for class 3, protect class 1 and class 2.
- Aggregate classes 1 and 2 into a new demand class \{1,2\}.
- Set demand and price for the class \{1,2\}:
 \[d_{\{1,2\}} = d_1 + d_2 \quad \text{and} \quad p_{\{1,2\}} = \frac{p_1 E d_1 + p_2 E d_2}{E d_1 + E d_2} \]
- The protection level for the aggregate class \{1,2\} while booking for class 3 is
 \[p_3 / p_{\{1,2\}} = P(d_{\{1,2\}} > y_2) \]

- In general,
 \[d_{\{1,2,\ldots,i\}} = d_1 + d_2 + \ldots + d_i \quad \text{and} \quad p_{\{1,2,\ldots,i\}} = \sum_{j=1}^{i} p_j \frac{E d_j}{\sum_{k=1}^{i} E d_k} \]
 \[\frac{p_{i+1}}{p_{\{1,2,\ldots,i\}}} = P(d_{\{1,2,\ldots,i\}} > y_i) \]

- Protect class \{1,2,\ldots,i\} more against class \(i+1\) if
 - Class \{1,2,\ldots,i\} demand is larger
 - Class \{1,2,\ldots,i\} price is larger
Version-b Heuristic with Normal Demands

- With normal independent demands mean μ_i and standard deviation δ_i

$$
\mu_{\{1,2,\ldots,i\}} = \mu_1 + \mu_2 + \ldots + \mu_i, \quad \delta_{\{1,2,\ldots,i\}} = \sqrt{\sum_{j=1}^{i} \delta_j^2}
$$

and

$$
p_{\{1,2,\ldots,i\}} = \frac{\sum_{j=1}^{i} p_j d_j}{\mu_{\{1,2,\ldots,i\}}}.
$$

The protection level for the aggregate class $\{1,2,\ldots,i\}$ while booking for class $i+1$ is

- $y_{\{1,2,\ldots,i\}} = \text{Norminv} \left(1 - \frac{p_{i+1}}{p_{\{1,2,\ldots,i\}}}, \mu_{\{1,2,\ldots,i\}}, \delta_{\{1,2,\ldots,i\}} \right)$

Example: Suppose that first and second class demands are normal with the same parameters

$\mu_1 = \mu_2 = 20; \quad \delta_1 = \delta_2 = 5$

What is the distribution of the demand of aggregate class $\{1,2\}$?

The aggregate distribution is also Normal with parameters:

$$
\mu_{\{1,2\}} = 40; \quad \delta_{\{1,2\}} = \sqrt{5^2 + 5^2} \approx 7.1
$$
Comparison of Version-a & Version-b Heuristics under Normal Demands

◆ Example: Suppose that first and second class demands are normal with the same parameters $\mu_1 = \mu_2 = 20; \ \delta_1 = \delta_2 = 5$.

Then the distribution of the demand of aggregate class \{1,2\} is also Normal with parameters:

$$\mu_{\{1,2\}} = 40; \ \delta_{\{1,2\}} = \sqrt{5^2 + 5^2} \approx 7.1$$

Furthermore, suppose that the prices for classes are $p_1=1000; p_2=700; p_3=400$. Find the protection level for classes 1 and 2 by using EMSR-a and EMSR-b heuristics.

EMSR-a heuristic:

◆ Protection level for class 1 from class 3:

$$y_{1,3} = norminv\left(1 - \frac{400}{1000}, 20, 5\right) = 21.27$$

◆ Protection level for class 2 from class 3:

$$y_{2,3} = norminv\left(1 - \frac{400}{700}, 20, 5\right) = 19.10$$

◆ Protection level for classes 1-2 from class 3:

$$y_2 = 21.27 + 19.10 = 40.37$$

EMSR-b heuristic:

◆ Price for the aggregate class \{1,2\}=850.

◆ Protection level for the aggregate class \{1,2\} while booking for class 3 is

$$y_{1,2} = norminv\left(1 - \frac{400}{850}, 40, 7.1\right) = 40.52$$

◆ Protection level for classes 1-2 from class 3:

$$y_2 = 40.52$$

The protection levels above are almost the same.
2-class Problem
Demand Dependence By Buying up

\[F_d(b): \text{No second class is rejected with } b \text{ or } b+1 \]

\[d_d \leq b \]
Remaining capacity for first class is the same

\[1-F_d(b) \]: Remaining capacity for first class is less by 1

\[d_d > b \]

If \(p_d < \alpha p_f \), do not book for the 2nd class
Increasing \(b \), we lose the opportunity of selling at \(p_f \) to low-paying customers who buy up if their class is closed

\[d_f \leq C-b \]

\[1-F_f(C-b) \]: First class rejected because of \(b+1 \)

\[d_f > C-b \]

\[0-0=0 \]

\[p_d - p_f < 0 \]

\[p_d - 0 > 0 \]

\[p_d - p_f < 0 \]

\[1-\alpha \]

\[\alpha: \text{Rejected class 2 buys up class 1} \]

\[F_f(C-b) \]: Low first class demand

\[\alpha \]

\[p_d - p_f < 0 \]

\[p_d - 0 > 0 \]

\[0 \]

Marginal effect on revenue

Expected marginal effect on revenue

\[
= F_d(b)(0) + [1 - F_d(b)] \left[[1 - F_f(C - b)](p_d - p_f) + F_f(C - b)(p_d - \alpha p_f) \right]
\]

\[
= [1 - F_d(b)][p_d - \alpha p_f - [1 - F_f(C - b)](1 - \alpha)p_f]
\]

\[
= [1 - F_d(b)](1 - \alpha)p_f \left[F_f(C - b) - \left(1 - \frac{p_d - \alpha p_f}{(1-\alpha)p_f} \right) \right]
\]

\[
= F_d(b)(0) + [1 - F_d(b)] \left[[1 - F_f(C - b)](p_d - p_f) + F_f(C - b)(p_d - \alpha p_f) \right]
\]

\[
= [1 - F_d(b)][p_d - \alpha p_f - [1 - F_f(C - b)](1 - \alpha)p_f]
\]

\[
= [1 - F_d(b)](1 - \alpha)p_f \left[F_f(C - b) - \left(1 - \frac{p_d - \alpha p_f}{(1-\alpha)p_f} \right) \right]
\]
2 Fare Classes
Booking Limit and Protection Level

The critical term is \(F_f(C - b) - \left(\frac{p_f - p_d}{(1 - \alpha)p_f} \right) \).

\(F_f(C - b) \) decreases as \(b \) increases because \(F_f \) is a cumulative density and increases in its argument.

If \(b = 0 \) & \(F_f(C - [b = 0]) \leq \left(\frac{p_f - p_d}{(1 - \alpha)p_f} \right) \), set \(b = 0 \).

In this case, the discount price is very low so it is not worth opening up the discount class.

For any \(b \), increase \(b \) as long as \(F_f(C - b) > \left(\frac{p_f - p_d}{(1 - \alpha)p_f} \right) \).

For a continuous full fare demand distribution, \(C - b^* = F_f^{-1} \left(\frac{p_f - p_d}{(1 - \alpha)p_f} \right) \) and \(b^* \leq C \).

\[
\begin{align*}
 b^* &= \max \left\{ C - F_f^{-1} \left(\frac{p_f - p_d}{(1 - \alpha)p_f} \right) , 0 \right\} \\
 y^* &= \min \left\{ F_f^{-1} \left(\frac{p_f - p_d}{(1 - \alpha)p_f} \right) , C \right\} \\
 \text{Or} & \quad \frac{p_f - p_d}{(1 - \alpha)p_f} = P(d_f \leq y^*) \\
 \text{Or} & \quad \frac{p_d - \alpha p_f}{(1 - \alpha)p_f} = P(d_f > y^*)
\end{align*}
\]
2 Fare Classes
Protection Level with Uniform Demand

Suppose that the first class (full-fare) class demand is uniform between 20 and 40 seats on a flight. Moreover, first class passengers pay $1000, while the discount fare is $300. Buy up probability is 0.2. What are booking limits for discount fare if the plane has $C = 100$ or $C = 30$ seats?

Protection level y first:

\[
F_f(x) = \frac{x - 20}{20} \quad \text{for} \quad 20 < x < 40.
\]

\[
F_f^{-1}(u) = 20 + 20u \quad \text{for} \quad 0 < u < 1.
\]

\[
F_f^{-1}\left(\frac{p_f - p_d}{(1 - \alpha)p_f}\right) = F_f^{-1}\left(\frac{1000 - 300}{(1 - 0.2)1000}\right) = 37.5.
\]

Let us round up the protection level to 38.

If capacity=100, booking limit=100-38=62 for the discount class. If capacity=30, booking limit=(30-38)+=0 for the discount class.

Booking limit with buy-up probability 0 is 67, it decreases to 62 with buy-up probability of 0.2.

\[
\frac{p_f - p_d}{(1 - \alpha)p_f} = \frac{7}{8}
\]
2 Fare Classes

Protection Level with Normal Demand

Suppose that the first class (full-fare) class demand is normal with mean 30 seats and standard deviation 5. Moreover, first class passengers pay $1000, while the discount fare is $300. Buy up probability is 0.2.

What are booking limits for discount fare if the plane has $C = 100$ or $C = 30$ seats?

Standard normal cumulative distribution $\Phi(z)$.

$$\Phi_z^{-1}\left(\frac{7}{8}\right) = \text{norminv}(7/8, \text{mean} = 0, \text{stdev} = 1) = 1.15 = z.$$

Protection level $= \text{mean} + z \times \text{stdev} = 30 + (1.15)5 = 35.75$.

Or use $\text{norminv}(7/8, \text{mean} = 30, \text{stdev} = 5) = 35.75$.

Let us round up the protection level to 36.

If capacity=100, booking limit=100-36=64 for the discount class.
If capacity=30, booking limit=(30-36)$^+$=0 for the discount class.
Bid (Displacement) Prices

- **Bid price** for a flight is the threshold price that depends on the remaining capacity & time until departure, such that

 a booking request is \{\text{accepted if the fare} > \text{ more} \}, \text{rejected if the fare} < \text{ less} \} \text{ than the threshold price}

- **Bid price** = \((1 + \text{ Profit margin}) \ast (\text{Displacement cost})\), reminiscent of cost-plus pricing
 - To focus on the rest, assume profit margin = 0

- **Bid price (Displacement cost)** is the marginal (opportunity) cost of capacity.

- How much to charge to a request to allocate 1 unit capacity to that request?
 - Profit \(\Pi(b)\) with the capacity \(b\) versus the profit \(\Pi(b - 1)\) with the remaining capacity \(b - 1\) after allocation
 - **Accept** if the fare > \(\Pi(b) - \Pi(b - 1)\)
 - **Reject** if the fare < \(\Pi(b) - \Pi(b - 1)\)

- **Bid price (Displacement cost)** = \(\Pi(b) - \Pi(b - 1) = \frac{d}{d b} \Pi(b)\)

- Bid price is the marginal cost of capacity.
 - From linear demand & constrained capacity: The profit \(\Pi(p) = (p - c) (D - mp)\) and the capacity \(b\)
 - **When the capacity is not binding**, i.e., \(b \geq D - mp_0\) where \(p_0\) is the maximizer of \(\Pi(p)\),
 \[
 \frac{d}{d b} \Pi(b) = 0
 \]
 - **When the capacity is binding**,\[
 \frac{d}{d b} \Pi(b) = \frac{D}{m} - \frac{2b}{m} - c
 \]
Towards Bid Price Computation

- Ex: Suppose that $d(p) = 200 - 10p$ if $0 \leq p \leq 20$. Find total margin maximizing price when the cost is $c = 0$ and the capacity constraint is $b = 20$.
 - $b = 20$
 - From $\max_p pd(p) = 200p - 10p^2$, the unconstrained price $p_0 = 10$.
 - Binding because $d(10) = 100 > 20 = b$.
 - To sell all of the capacity $20 = b = d(p) = 200 - 10p$ or $p = 18$.
 - $\Pi(b = 20) = 360$.
 - After selling 1, $b = 19$
 - From $\max_p pd(p) = 200p - 10p^2$, the unconstrained price $p_0 = 10$.
 - Binding because $d(10) = 100 > 19 = b$.
 - To sell all of the capacity $19 = b = d(p) = 200 - 10p$ or $p = 18.1$.
 - $\Pi(b = 19) = 343.9$.
 - $\Pi(20) - \Pi(19) = 360 - 343.9 = 16.1$.
 - Charge 16.1 to compensate for the 20th unit.
 - This price is different from 18 because of discreteness, see below.
 - Suppose we set $p = 18$ slightly higher than 16.1.

- When capacity is binding, bid price \approx optimal price, subject to discreteness of sellable capacity units
 - When capacity is not discrete, but continuous at small ϵ, bid price is $\frac{\Pi(b) - \Pi(b-\epsilon)}{\epsilon}$, which is $\frac{\partial \Pi(b)}{\partial b}$.
 - When the capacity is binding, $\Pi(b) = bp$ and $p = d^{-1}(p)$ so $\frac{\partial \Pi(b)}{\partial b} = \frac{\partial}{\partial b} bp = p = d^{-1}(p)$.
 - In the discrete example above $\frac{\Pi(20) - \Pi(19)}{1} = 16.1$ while $d^{-1}(p) = 18$.
Bid Prices over Time

- In a static setting, the bid price would be
 \[\frac{d}{db} \Pi(b) \approx \Pi(b) - \Pi(b - 1) \]

- In the dynamic setting, the marginal cost of capacity when \(t \) units of time left is
 \[\frac{d}{db} \Pi(b, t) \approx \Pi(b, t) - \Pi(b - 1, t) \]

- Bid price decreases with large capacity (supply) and with less amount of remaining time (demand).

- Opportunity cost of capacity depends on the capacity \(b \).
 - If \(b \) is very large, the opportunity cost is low: Not enough customers to sell the large capacity after denying the current.

- Opportunity cost of capacity also depends on the time \(t \) that remains to sell the capacity.
 - If \(t \) is very small, the opportunity cost is low: Not enough time to sell after denying the current.
Bid Price Path

In comparison to fare classes, booking by bid prices

- Is simpler as there is a single bid price for a single flight while there are many fare classes
- Is more complex as the bid prices must be computed dynamically while fare class booking limits can be static.

No free lunch by booking via fare classes or bid prices.
Bid Prices with Constant Prices

- When capacity is non-binding, bid price $= 0 < \text{optimal price}$
 - Value-based pricing: Optimal price
 - (Opportunity) Cost-based pricing: Bid price
 » Opportunity cost of one fewer unit of capacity is nothing if capacity > demand

- Bid price at time t is the value of capacity $\Pi(b, t) - \Pi(b - 1, t)$

- A request acceptance/rejection formulation.
 - $\Pi(b, t)$ is optimal profit obtained by selling b capacity to h & l type customers over $t, t - 1, \ldots, 1$.
 - h and l customers are high-type (full fare) paying p_h and low-type (discount fare) paying p_l.
 - q_h and q_l are probability of h and l customers showing up, $q_h + q_l \leq 1$

<table>
<thead>
<tr>
<th>(\Pi(b, t))</th>
<th>No customer request</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= (1 - q_h - q_l) \Pi(b, t - 1)$ + $q_h \max { \Pi(b, t - 1), p_h + \Pi(b - 1, t - 1) }$ + $q_l \max { \Pi(b, t - 1), p_l + \Pi(b - 1, t - 1) }$</td>
<td>Capacity $\downarrow b - 1$ with an acceptance of h request</td>
</tr>
</tbody>
</table>

| \(\Pi(0, t) \) | Capacity $\downarrow b - 1$ with an acceptance of l request |
|------------------| Revenue with no capacity or no demand (time). |

\(\Pi(0, 0) = \Pi(b, 0) = 0 \)

This dynamic program can be evaluated in Excel for various (p_h, p_l) & (q_h, q_l); see bidPrices.xlsx.
Bid Prices with Optimized Prices

- Assume that future prices = the current price and solve: Exemplified on the previous pages

- In reality, future prices can respond to current demand, so they should be different from the current one
 - Future prices are anticipatory with respect to current demand

- To allow for future prices to respond, we need a recursive revenue computation.
 - \(\Pi(b, t) \) is optimal profit obtained by selling \(b \) capacity to \(h \) and \(l \) type customers.
 - \(h \) and \(l \) customers are high-type (full fare) and low-type (discount fare).
 - \(WTP_h \) and \(WTP_l \) are willingness to pay of \(h \) and \(l \) customers
 - \(q_h \) and \(q_l \) are probability of \(h \) and \(l \) customers showing up, \(q_h + q_l \leq 1 \)
 - \(p_h \) and \(p_l \) are current prices for \(h \) and \(l \) customer

\[
\Pi(b, t) = \max_{p_h, p_l} \left(q_h P(WTP_h > p_h) p_h + q_l P(WTP_l > p_l) p_l \right) \\
+ \left(q_h P(WTP_h > p_h) + q_l P(WTP_l > p_l) \right) \Pi(b - 1, t - 1) \\
+ \left(1 - q_h P(WTP_h > p_h) - q_l P(WTP_l > p_l) \right) \Pi(b, t - 1)
\]

\[
\Pi(0, t) = \Pi(b, 0) = 0
\]
Prices over Time

- With \(t = 20 \) days until flight departure/room check-in/car pick-up, decide on the price:
 - \(d(p, t = 20) = 200 - 10p \) and \(b(t = 20) = 20 \) yields \(p(t) = 18 \).

- Demand for the remaining \(t \) days can be given as \(d(p, t) = 10t - 10p \).

- Suppose 1 person buys on day 20, so \(b(t = 19) = 19 \).

- On day 19, \(b(19) = 19 \) and \(d(p, 19) = 190 - 10p \).
 - For \(b(19) = 19 \),
 » max \(pd(p, 19) = 190p - 10p^2 \) \(\Rightarrow p_0 = 9.5 \). But \(d(9.5,19) = 95 > 19 \).
 » To sell all of the capacity \(19 = 190 - 10p \) or \(p = 17.1 \). \(\Pi(b = 19, t = 19) = 19 \times 17.1 = 324.9 \).
 - For \(b(19) = 18 \),
 » From max \(pd(p) = 190p - 10p^2 \) \(\Rightarrow p_0 = 9.5 \). But \(d(9.5,19) = 95 > 18 \).
 » To sell all of the capacity \(18 = 190 - 10p \) or \(p = 17.2 \). \(\Pi(b = 18, t = 19) = 309.6 \).
 - \(\Pi(19,19) - \Pi(18,19) = 324.9 - 309.6 = 15.3 \). Suppose we set \(p = 17 \) slightly higher than 15.3.
 - Suppose nobody buys at \(p = 17 \).

- On day 18, \(b(18) = 19 \) and \(d(p, 18) = 180 - 10p \).
 - For \(b(18) = 19 \),
 » From max \(pd(p) = 180p - 10p^2 \) \(\Rightarrow p_0 = 9 \). But \(d(9,18) = 90 > 19 = b(18) \).
 » To sell all of the capacity \(19 = 180 - 10p \) or \(p = 16.1 \). \(\Pi(b = 19, t = 18) = 305.9 \).
 - For \(b(18) = 18 \),
 » From max \(pd(p) = 180p - 10p^2 \) \(\Rightarrow p_0 = 9 \). But \(d(9,18) = 90 > 18 = b(18) \).
 » To sell all of the capacity \(18 = 180 - 10p \) or \(p = 16.2 \). \(\Pi(b = 18, t = 18) = 291.6 \).
 - \(\Pi(18,18) - \Pi(17,18) = 324.9 - 309.6 = 14.3 \). Suppose we set \(p = 16 \) slightly higher than 14.3.
 - Three buy at 16 on day 18, and so on …
Summary

- Two-class allocation
- Multiple-class allocation
- Demand dependence
- Bid prices

Based on Phillips (2005) Chapter 7
Normal Density Function

Excel statistical functions:
Density function (pdf) at \(x \) : \(\text{normdist}(x, \text{mean}, \text{st } _\text{dev}, 0) \)
Cumulative function (cdf) at \(x \) : \(\text{normdist}(x, \text{mean}, \text{st } _\text{dev}, 1) \)
Cumulative Normal Density

Excel statistical functions:
Cumulative function (cdf) at x: $\text{normdist}(x, mean, st_dev, 1)$
Inverse function of cdf at "prob": $\text{norminv}(\text{prob}, mean, st_dev)$