Sedic: Privacy-Aware Data Intensive Computing on Hybrid Clouds

K. Zhang, X. Zhou, Y. Chen, X. Wang, Y. Ruan
Motivation

- Rapid growth of information ⇒ High processing demand

- Commercial cloud providers can meet demand
 - Amazon EC2, EMR, etc.

- Large privacy risks with outsourcing processing – HIPAA

- Are cryptographic techniques a solution??
 - Prohibitively expensive
 - Hard to scale
Motivation

• Are Hybrid Clouds a solution??
 – Split computations
 – Send computations over non-sensitive info to public cloud
 – Send computations over sensitive info

• How about using MapReduce on a Hybrid Cloud??
 – Designed for a single cloud
 – Unaware of data with multiple security levels
 – Manual splitting of processing required

• Need framework-level support to facilitate processing over hybrid clouds
Sedic – Objectives

- High Privacy Assurance
 - Only public data is given to a commercial cloud
- Maximum public cloud utilization
 - Move as much computation to the public cloud as possible while respecting a user’s privacy
- Scalability
 - Preserve MapReduce scalability while keeping a low privacy protection overhead
- Limited inter-cloud transfer
 - Since it is expensive
- Easy to use
 - Preserve end-user’s MapReduce experience
Table 1: Steps for a Privacy-Aware MapReduce

<table>
<thead>
<tr>
<th>Users</th>
<th>Sedic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Label sensitive data, which can be done through a data-tagging tool (Section 3.1).</td>
<td>• Analyze and transform the reduction structure of the job (Section 4).</td>
</tr>
<tr>
<td>• Submit to Sedic labeled data and a MapReduce job.</td>
<td>• Partition and replicate the data according to security labels (Section 3.1).</td>
</tr>
<tr>
<td></td>
<td>• Create and schedule mappers across the public/private clouds (Section 3.2).</td>
</tr>
<tr>
<td></td>
<td>• Combine the results on the public cloud and complete the reduction on the private cloud (Section 3.3).</td>
</tr>
</tbody>
</table>
Sedic – Design
Sedic – Data Labeling and Replication

Data Labeling

Identified

Labeled

Sensitive

Data Replication

public cloud

private cloud

1. request to allocate a block
2. set up data replication pipeline
3. transfer data to private data node
4. replicate, sanitize data
Sedic – Map Task Management

```
A public task
{(data offset, len),
 (data offset, len),
 ...
}

A private task
{(data offset, len),
 (data offset, len),
 ....
 }
```
Sedic – Reduction Planning

- Move all public cloud Map outputs to private cloud
 - Very large inter-cloud communication
- User sets an upper limit for bandwidth and delay related with inter-cloud data transfer
 - Scheduler stops assigning Map’s to public clouds once limit is reached
 - Constrains amount of public cloud computation
- Let public cloud perform Reduce too
 - Leverage associative and commutative properties of fold loop’s in Reduce
- Extract loops to create Combiners that process data on public clouds
Sedic – Automatic Reducer Analysis and Transformation
Conclusions

• Sedic provides a privacy-aware hybrid computing paradigm
• Sedic schedules Map’s such that tasks on private clouds operate on sensitive data while tasks on public clouds operate on non-sensitive data
• Sedic automatically extracts Combiner’s from Reduce functions that allow public clouds to process data