Homework 1

Due Wednesday, August 30, before class.

1. **Problem.** Prove the Schwartz inequality:

 \[|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}||\mathbf{b}|. \]

 (1)

2. **Problem.** *(Problem in two-dimensions.)* Given the line:

 \[\mathbf{L}_1 : y = 2x , \]

 find the equation of the line \(\mathbf{L}_2 \) perpendicular to \(\mathbf{L}_1 \) passing through the point \(P = (1, 2) \).

3. **Problem.** *(Problem in two-dimensions.)* Given the ellipse:

 \[\frac{x^2}{4} + \frac{y^2}{9} = 1 , \]

 find the equation of the line tangent to the ellipse at the point \(P = (1, 3\sqrt{3}/2) \).

4. **Problem.** Consider the scalar field:

 \[f(x) = a|\mathbf{r}|^2 , \]

 (4)

 \((a) \). Find the gradient of \(f \) at an arbitrary point \(\mathbf{r} = (x, y, z) \).

 \((b) \). Show directly that \(\nabla \times \nabla f = 0 \).