4-8 SOME SPECIAL AVERAGES OF FUNCTIONS OF TWO RANDOM VARIABLES

Joint Moments

The mth joint moments of two random variables X and Y are defined as

$$m_{mn} = E[X^m Y^n], m, n = 1, 2, \ldots$$ \hspace{1cm} (4-37)

Special cases of (4-37) include the means of X and Y obtained, respectively, by setting $m = 1$ and $n = 0$ and $m = 0$ and $n = 1$. Note that the joint moments of statistically independent random variables factor for all m and n.

Example 4-13

Find the joint moments of the random variables with joint probability mass function shown in Figure 4-4 if

$$x_1 = 1, x_2 = 2, x_3 = 3, y_1 = 3, y_2 = 3, y_3 = 4$$

Solution Substituting into (4-37) and using (4-34b) for the expectation, we obtain

$$E(X^3 Y) = 1^3 3^4 \times 0.2 + 2^3 3^4 \times 0.6 + 3^3 4^4 \times 0.2$$

Several special cases are given in Table 4-3.

Joint Central Moments

These are obtained by first subtracting from X and Y their respective means and then finding the joint moments of these new random variables:

$$
\mu_{mn} = E[(X - \mu_X)^m (Y - \mu_Y)^n], m, n = 1, 2, \ldots
$$ \hspace{1cm} (4-38)

where μ_X and μ_Y are the means of X and Y, respectively. The special cases $m = 2, n = 0$ and $m = 0, n = 2$ give the variances of X and Y, respectively.

Covariance

This is a special case of the joint central moments with $m = n = 1$:

$$
C_{XY} = E[(X - \mu_X)(Y - \mu_Y)]
$$ \hspace{1cm} (4-39a)

By expanding the expectation, this can be put into the form

$$
C_{XY} = E[XY] - \mu_X \mu_Y = R_{XY} - \mu_X \mu_Y
$$ \hspace{1cm} (4-39b)

where R_{XY} is called the *correlation*; it is a special case of (4-37) for $m = n = 1$.

Correlation Coefficient

The *correlation coefficient* is defined as

$$
\rho_{XY} = \frac{C_{XY}}{\sigma_X \sigma_Y}
$$ \hspace{1cm} (4-40)

where C_{XY} denotes the covariance (4-39a).
Example 4-3

Consider the function of two variables
\[f_{xy}(x, y) = \begin{cases} Axy, & 0 < x < y, \quad 0 < y < 1 \\ 0, & \text{otherwise} \end{cases} \]

(a) Find \(A \) such that this is a proper pdf.
(b) Find the probability that \(0 < X < 0.5 \) and \(0.5 < Y < 1 \).
(c) Obtain the marginal pdf's for \(X \) and \(Y \).

Solution
(a) Since the volume under the joint pdf must be 1 [see the remark after (4-10)], we compute
\[\int_0^1 \int_0^y Axy \, dx \, dy = \int_0^1 \left[\frac{A}{2} y^2 \right]_0^y \, dy = \frac{A}{2} \int_0^1 y^2 \, dy = \frac{A}{8} = 1 \]
from which we deduce that \(A = 8 \). In the integration of the \(f_{xy}(x, y) \), we have made use of the fact that the function is nonzero over a triangle defined by \(x \) between the \(y \)-axis and the line \(x = y \) and on \(y \) from 0 to 1. The student should sketch this area and deduce that the limits of integration are proper.

(b) From (4-13), the desired probability may be computed as
\[P(0 < X < 0.5, 0.5 < Y < 1) = 8 \int_0^{0.5} \int_0^y xy \, dx \, dy = 0.375 \]

(c) The marginal pdf for \(X \) is obtained by integrating the joint pdf over all \(y \) as given by (4-12a):
\[f_x(x) = \int_x^1 8xy \, dy = 8x \frac{y^2}{2} \bigg|_x^1 = 4x(1 - x^2), \quad 0 < x < 1 \]
and zero elsewhere. The limits of integration are deduced by noting the region in the \(x-y \) plane, where \(f_{xy}(x, y) \) is nonzero. The marginal pdf for \(Y \) is obtained by integrating the joint pdf over all \(x \) as given by (4-12b):
\[f_y(y) = \int_0^y 8xy \, dx = 8y \frac{x^2}{2} \bigg|_0^y = 4y^3, \quad 0 < y < 1 \]
and zero elsewhere. Note that both \(f_x(x) \) and \(f_y(y) \) integrate to 1, as they should.

Example 4-14

Find the correlation, covariance, and correlation coefficient for the random variables with joint pdf given in Example 4-3.

Solution
By definition, the correlation is
\[R_{xy} = E[XY] = \int_0^1 \int_0^y xy(8xy) \, dx \, dy = \frac{4}{9} \]
The means are
\[\mu_x = \int_0^1 x[4x(1 - x^2)] \, dx = \frac{8}{15} \quad \text{and} \quad \mu_y = \int_0^1 y(4y^3) \, dy = \frac{4}{5} \]
where the marginal pdf's obtained in Example 4-3 were used. The covariance is
\[C_{xy} = \frac{4}{9} - \frac{8}{15} \cdot \frac{4}{5} = \frac{4}{225} \]
To get the correlation coefficient, we need the variances. We compute the mean-square values first. They are
\[E[X^2] = \int_0^1 x^2[4x(1 - x^2)] \, dx = \frac{1}{3} \quad \text{and} \quad E[Y^2] = \int_0^1 y^2(4y^3) \, dy = \frac{2}{3} \]
Thus the variances are
\[\sigma_x^2 = \frac{11}{225} \quad \text{and} \quad \sigma_y^2 = \frac{2}{75} \]
Substituting into (4-40), we find the correlation coefficient to be
\[\rho_{xy} = \frac{4/225}{(\sqrt{11/15})(\sqrt{2/5})} = \frac{2\sqrt{2/33}}{\sqrt{2/3}} = 0.4924 \]