1. Each node maintains an n*n matrix, where n is the number of nodes in the system.
2. When node i has to multicast a message, node i increments Mi[i,j] by one, for each node k in the destination list of the message.
3. The resultant matrix is sent with the message.
4. When node j receives a message from node i, node j compares the jth column of its matrix Mj with the jth column of the matrix carried by the message:
 The message can be delivered only when the following conditions hold:
 (a) Mm[i,j] - 1 = Mj[i,j], and
 (b) Mm[k,j] is less than or equal to Mj[k,j] for all k different from i.
5. If the two conditions stated above are not satisfied, the message is buffered for future delivery when the conditions are satisfiable.
6. On message delivery the resultant matrix at the receiver j is determined as follows: Mj[x,y] = max(Mj[x,y], Mm[x,y])

 Here, Mm[] represents the matrix carried by a message and Mi[] represents the matrix maintained by node i.