Problem 1.1.2 Solution

Based on the Venn diagram on the right, the answers are mostly fairly straightforward. The only trickiness is that a pizza is either Tuscan \((T) \) or Neapolitan \((N) \) so \(\{N,T\} \) is a partition but they are not depicted as a partition. Specifically, the event \(N \) is the region of the Venn diagram outside of the “square block” of event \(T \). If this is clear, the questions are easy.

(a) Since \(N = T^c \), \(N \cap M \neq \emptyset \). Thus \(N \) and \(M \) are not mutually exclusive.

(b) Every pizza is either Neapolitan \((N) \), or Tuscan \((T) \). Hence \(N \cup T = S \) so that \(N \) and \(T \) are collectively exhaustive. Thus its also (trivially) true that \(N \cup T \cup M = S \). That is, \(R \), \(T \) and \(M \) are also collectively exhaustive.

(c) From the Venn diagram, \(T \) and \(O \) are mutually exclusive. In words, this means that Tuscan pizzas never have onions or pizzas with onions are never Tuscan. As an aside, “Tuscan” is a fake pizza designation; one shouldn’t conclude that people from Tuscany actually dislike onions.

(d) From the Venn diagram, \(M \cap T \) and \(O \) are mutually exclusive. Thus Gerlanda’s doesn’t make Tuscan pizza with mushrooms and onions.

(e) Yes. In terms of the Venn diagram, these pizzas are in the set \((T \cup M \cup O)^c \).

Problem 1.2.2 Solution

(a) The sample space of the experiment is

\[S = \{aaa, aaf, afa, faa, ffa, faf, aff, fff\}. \tag{1} \]
(b) The event that the circuit from Z fails is
\[Z_F = \{aaf, aff, faf, fff\}. \] (2)

The event that the circuit from X is acceptable is
\[X_A = \{aaa, aaf, afa, aff\}. \] (3)

(c) Since $Z_F \cap X_A = \{aaf, aff\} \neq \emptyset$, Z_F and X_A are not mutually exclusive.

(d) Since $Z_F \cup X_A = \{aaa, aaf, afa, aff, faf, fff\} \neq S$, Z_F and X_A are not collectively exhaustive.

(e) The event that more than one circuit is acceptable is
\[C = \{aaa, aaf, afa, faa\}. \] (4)

The event that at least two circuits fail is
\[D = \{ffa, faf, aff, fff\}. \] (5)

(f) Inspection shows that $C \cap D = \emptyset$ so C and D are mutually exclusive.

(g) Since $C \cup D = S$, C and D are collectively exhaustive.

Problem 1.3.5 Solution

The sample space of the experiment is
\[S = \{LF, BF, LW, BW\}. \] (1)

From the problem statement, we know that $P[LF] = 0.5$, $P[BF] = 0.2$ and $P[BW] = 0.2$. This implies $P[LW] = 1 - 0.5 - 0.2 - 0.2 = 0.1$. The questions can be answered using Theorem 1.5.

(a) The probability that a program is slow is
\[P[W] = P[LW] + P[BW] = 0.1 + 0.2 = 0.3. \] (2)

(b) The probability that a program is big is
\[P[B] = P[BF] + P[BW] = 0.2 + 0.2 = 0.4. \] (3)

(c) The probability that a program is slow or big is
\[P[W \cup B] = P[W] + P[B] - P[BW] = 0.3 + 0.4 - 0.2 = 0.5. \] (4)
Problem 1.3.6 Solution
A sample outcome indicates whether the cell phone is handheld (H) or mobile (M) and whether the speed is fast (F) or slow (W). The sample space is

\[S = \{HF, HW, MF, MW\}. \] (1)

The problem statement tells us that \(P[HF] = 0.2 \), \(P[MW] = 0.1 \) and \(P[F] = 0.5 \). We can use these facts to find the probabilities of the other outcomes. In particular,

\[P[F] = P[HF] + P[MF]. \] (2)

This implies

\[P[MF] = P[F] - P[HF] = 0.5 - 0.2 = 0.3. \] (3)

Also, since the probabilities must sum to 1,

\[= 1 - 0.2 - 0.3 - 0.1 = 0.4. \] (4)

Now that we have found the probabilities of the outcomes, finding any other probability is easy.

(a) The probability a cell phone is slow is

\[P[W] = P[HW] + P[MW] = 0.4 + 0.1 = 0.5. \] (5)

(b) The probability that a cell phone is mobile and fast is \(P[MF] = 0.3 \).

(c) The probability that a cell phone is handheld is

\[P[H] = P[HF] + P[HW] = 0.2 + 0.4 = 0.6. \] (6)

Problem 1.3.10 Solution
Each statement is a consequence of part 4 of Theorem 1.4.

(a) Since \(A \subset A \cup B \), \(P[A] \leq P[A \cup B] \).

(b) Since \(B \subset A \cup B \), \(P[B] \leq P[A \cup B] \).

(c) Since \(A \cap B \subset A \), \(P[A \cap B] \leq P[A] \).

(d) Since \(A \cap B \subset B \), \(P[A \cap B] \leq P[B] \).
Problem 1.4.1 Solution

Each question requests a conditional probability.

(a) Note that the probability a call is brief is

\[P[B] = P[H_0B] + P[H_1B] + P[H_2B] = 0.6. \] (1)

The probability a brief call will have no handoffs is

\[P[H_0|B] = \frac{P[H_0B]}{P[B]} = \frac{0.4}{0.6} = \frac{2}{3}. \] (2)

(b) The probability of one handoff is \(P[H_1] = P[H_1B] + P[H_1L] = 0.2 \). The probability that a call with one handoff will be long is

\[P[L|H_1] = \frac{P[H_1L]}{P[H_1]} = \frac{0.1}{0.2} = \frac{1}{2}. \] (3)

(c) The probability a call is long is \(P[L] = 1 - P[B] = 0.4 \). The probability that a long call will have one or more handoffs is

\[P[H_1 \cup H_2|L] = \frac{P[H_1L \cup H_2L]}{P[L]} \]
\[= \frac{P[H_1L] + P[H_2L]}{P[L]} = \frac{0.1 + 0.2}{0.4} = \frac{3}{4}. \] (4)

Problem 1.4.2 Solution

Let \(s_i \) denote the outcome that the roll is \(i \). So, for \(1 \leq i \leq 6, R_i = \{s_i\} \). Similarly, \(G_j = \{s_{j+1}, \ldots, s_6\} \).

(a) Since \(G_1 = \{s_2, s_3, s_4, s_5, s_6\} \) and all outcomes have probability \(1/6 \), \(P[G_1] = 5/6 \). The event \(R_3G_1 = \{s_3\} \) and \(P[R_3G_1] = 1/6 \) so that

\[P[R_3|G_1] = \frac{P[R_3G_1]}{P[G_1]} = \frac{1}{5}. \] (1)
(b) The conditional probability that 6 is rolled given that the roll is greater than 3 is

$$P[R_6|G_3] = \frac{P[R_6G_3]}{P[G_3]} = \frac{P[s_6]}{P[s_4, s_5, s_6]} = \frac{1/6}{3/6} = \frac{1}{3}.$$ \hspace{1cm} (2)

(c) The event E that the roll is even is $E = \{s_2, s_4, s_6\}$ and has probability $3/6$. The joint probability of G_3 and E is

$$P[G_3E] = P[s_4, s_6] = 1/3.$$ \hspace{1cm} (3)

The conditional probabilities of G_3 given E is

$$P[G_3|E] = \frac{P[G_3E]}{P[E]} = \frac{1/3}{1/2} = \frac{2}{3}.$$ \hspace{1cm} (4)

(d) The conditional probability that the roll is even given that it’s greater than 3 is

$$P[E|G_3] = \frac{P[EG_3]}{P[G_3]} = \frac{1/3}{1/2} = \frac{2}{3}.$$ \hspace{1cm} (5)

Problem 1.4.7 Solution

The sample outcomes can be written ijk where the first card drawn is i, the second is j and the third is k. The sample space is

$$S = \{234, 243, 324, 342, 423, 432\}.$$ \hspace{1cm} (1)

and each of the six outcomes has probability $1/6$. The events $E_1, E_2, E_3, O_1, O_2, O_3$ are

$$E_1 = \{234, 243, 423, 432\}, \quad O_1 = \{324, 342\}, \quad \hspace{1cm} (2)$$
$$E_2 = \{243, 324, 342, 423\}, \quad O_2 = \{234, 432\}, \quad \hspace{1cm} (3)$$
$$E_3 = \{234, 324, 342, 432\}, \quad O_3 = \{243, 423\}. \quad \hspace{1cm} (4)

(a) The conditional probability the second card is even given that the first card is even is

$$P[E_2|E_1] = \frac{P[E_2E_1]}{P[E_1]} = \frac{P[243, 423]}{P[234, 243, 423, 432]} = \frac{2/6}{4/6} = 1/2.$$ \hspace{1cm} (5)
(b) The conditional probability the first card is even given that the second card is even is
\[
P [E_1|E_2] = \frac{P [E_1E_2]}{P [E_2]} = \frac{P [243, 423]}{P [243, 324, 342, 423]} = \frac{2/6}{4/6} = 1/2. \tag{6}
\]

(c) The probability the first two cards are even given the third card is even is
\[
P [E_1E_2|E_3] = \frac{P [E_1E_2E_3]}{P [E_3]} = 0. \tag{7}
\]

(d) The conditional probabilities the second card is even given that the first card is odd is
\[
P [E_2|O_1] = \frac{P [O_1E_2]}{P [O_1]} = \frac{P [O_1]}{P [O_1]} = 1. \tag{8}
\]

(e) The conditional probability the second card is odd given that the first card is odd is
\[
P [O_2|O_1] = \frac{P [O_1O_2]}{P [O_1]} = 0. \tag{9}
\]

Problem 1.5.1 Solution

From the table we look to add all the mutually exclusive events to find each probability.

(a) The probability that a caller makes no hand-offs is
\[
P [H_0] = P [LH_0] + P [BH_0] = 0.1 + 0.4 = 0.5. \tag{1}
\]

(b) The probability that a call is brief is
\[
P [B] = P [BH_0] + P [BH_1] + P [BH_2] = 0.4 + 0.1 + 0.1 = 0.6. \tag{2}
\]

(c) The probability that a call is long or makes at least two hand-offs is
\[
P [L \cup H_2] = P [LH_0] + P [LH_1] + P [LH_2] + P [BH_2]
= 0.1 + 0.1 + 0.2 + 0.1 = 0.5. \tag{3}
\]
Problem 1.5.2 Solution

(a) From the given probability distribution of billed minutes, \(M \), the probability that a call is billed for more than 3 minutes is

\[
P[L] = 1 - P[3 \text{ or fewer billed minutes}]
= 1 - P[B_1] - P[B_2] - P[B_3]
= 1 - \alpha - \alpha(1 - \alpha) - \alpha(1 - \alpha)^2
= (1 - \alpha)^3 = 0.57. \tag{1}
\]

(b) The probability that a call will billed for 9 minutes or less is

\[
P[9 \text{ minutes or less}] = \sum_{i=1}^{9} \alpha(1 - \alpha)^{i-1} = 1 - (0.57)^3. \tag{2}
\]