4. Let \(f(x) = x^{-3}(x - \sin x) \) for \(x \neq 0 \). How should \(f(0) \) be defined in order that \(f \) be continuous? Will it also be differentiable?

5. a. Derive the Taylor series at 0 for the function \(f(x) = \ln(x + 1) \). Write this series in summation notation. Give two expressions for the remainder when the series is truncated.

b. Determine the smallest number of terms that must be taken in the series to yield \(\ln 1.5 \) with an error less than \(10^{-8} \).

c. Determine the number of terms necessary to compute \(\ln 1.6 \) with error \(10^{-10} \) at most.

6. Determine whether the following function is continuous, once differentiable, or twice differentiable:

\[
 f(x) = \begin{cases}
 x^3 + x - 1 & \text{if } x \leq 0 \\
 x^3 - x - 1 & \text{if } x > 0
\end{cases}
\]

7. (Continuation) Repeat the preceding problem for the function

\[
 f(x) = \begin{cases}
 x & \text{if } x \leq 1 \\
 x^2 & \text{if } x > 1
\end{cases}
\]

8. Criticize this reasoning: The function \(f \) defined by

\[
 f(x) = \begin{cases}
 x^3 + x & \text{if } x \leq 0 \\
 x^3 - x & \text{if } x \geq 0
\end{cases}
\]

has the properties

\[
 \lim_{x \to 0^+} f''(x) = \lim_{x \to 0^+} 6x = 0 \\
 \lim_{x \to 0^-} f''(x) = \lim_{x \to 0^-} 6x = 0
\]

Therefore, \(f'' \) is continuous.

9. Prove that if \(f \) is differentiable at \(x \), then

\[
 \lim_{h \to 0} \frac{f(x + h) - f(x - h)}{2h} = f'(x)
\]

Show that for some functions that are not differentiable at \(x \), the preceding limit exists. (See Eggermont [1988] or the following problem.)

10. Prove or disprove this assertion: If \(f \) is differentiable at \(x \), then for \(\alpha \neq 1 \),

\[
 f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x + \alpha h)}{h - \alpha h}
\]

11. Show that \(\lim_{x \to 1}(4x + 2) = 6 \) by means of an \(\varepsilon-\delta \) proof.

12. Show that \(\lim_{x \to 1}(1/x) = 1 \) by means of an \(\varepsilon-\delta \) proof.

13. For the function \(f(x) = 3 - 2x + x^2 \) and the interval \([a, b] = [1, 3]\), find the number \(\xi \) that occurs in the Mean-Value Theorem.

14. (Continuation) Repeat the preceding problem with the function \(f(x) = x^6 + x^4 - 1 \) and the interval \([0, 1]\).

15. Find the Taylor series for \(f(x) = \cosh x \) about the point \(c = 0 \).

16. If the series for \(\ln x \) is truncated after the term involving \((x - 1)^{1000} \) and is then used to compute \(\ln 2 \), what bound on the error can be given?
17. Find the Taylor series for \(f(x) = e^x \) about the point \(c = 3 \). Then simplify the series and show how it could have been obtained directly from the series for \(f \) about \(c = 0 \).

18. Let \(k \) be a positive integer and let \(0 < \alpha < 1 \). To what classes \(C^k(\mathbb{R}) \) does the function \(x^{k+\alpha} \) belong?

19. Prove: If \(f \in C^k(\mathbb{R}) \), then \(f' \in C^{k-1}(\mathbb{R}) \) and \(\int_a^b f'(t) \, dt \) belong to \(C^k(\mathbb{R}) \).

20. Prove Rolle's Theorem directly (not as a special case of the Mean-Value Theorem).

21. Prove: If \(f \in C^k(\mathbb{R}) \) and \(f(x_0) = f(x_1) = \cdots = f(x_n) = 0 \) for \(x_0 < x_1 < \cdots < x_n \), then \(f^{(n)}(\xi) = 0 \) for some \(\xi \in (x_0, x_n) \). Hint: Use Rolle's Theorem \(n \) times.

22. Prove that the function \(f(x) = x^2 \) is continuous everywhere.

23. For small values of \(x \), the approximation \(\sin x \approx x \) is often used. Estimate the error in using this formula with the aid of Taylor's Theorem. For what range of values of \(x \) will this approximation give results correct to six decimal places?

24. For small values of \(x \), how good is the approximation \(\cos x \approx 1 - \frac{1}{2}x^2 \)? For what range of values will this approximation give correct results rounded to three decimal places?

25. Use Taylor's Theorem with \(n = 2 \) to prove that the inequality \(1 + x < e^x \) is valid for all real numbers except \(x = 0 \).

26. Derive the Taylor series with remainder term for \(\ln(1 + x) \) about 1. Derive an inequality that gives the number of terms that must be taken to yield \(\ln 4 \) with error less than \(2^{-n} \).

27. What is the third term in the Taylor expansion of \(x^2 + x - 2 \) about the point \(3 \)?

28. Using the series for \(e^x \), how many terms are needed to compute \(e^2 \) correctly to four decimal places (rounded)?

29. Develop the Taylor series for \(f(x) = \ln x \) about \(e \), writing the results in summation notation and giving the remainder term. Suppose \(|x - e| < 1 \) and accuracy \(\frac{1}{2} \times 10^{-4} \) is desired. What is the minimum number of terms in the series required to achieve this accuracy?

30. Determine the first two terms of the Taylor series for \(x^5 \) about \(1 \) and the remainder term \(E_1 \).

31. Determine the Taylor polynomial of degree 2 for \(f(x) = e^{\cos x} \) expanded about the point \(\pi \).

32. First develop the function \(\sqrt{x} \) in a series of powers of \((x - 1) \) and then use it to approximate \(\sqrt[3]{0.999999 \times 10^{-4}} \) to ten decimal places.

33. Assume that \(|x| < \frac{1}{2} \) and determine by Taylor's Theorem the best upper bound.
 a. \(|\cos x - (1 - x^2/2)| \)
 b. \(|\sin x - x(1 - x^2/6)| \)

34. Determine a function that can be termed the linearization of \(x^3 - 2x \) at 2.

35. How many terms are required in the series

\[e = \sum_{k=0}^{\infty} \frac{1}{k!} \]

for \(e \) with an error of at most 6/10 unit in the 20th decimal place?

36. Find the first two terms in the Taylor expansion of \(x^{1/5} \) about the point \(x = 32 \). Approximate the fifth root of 31.999999 using these two terms in the series. How accurate is your answer?

37. Find the Taylor polynomial of degree 2 for the function \(f(x) = e^{2x} \sin x \) expanded about the point \(\pi/2 \).