Suffix Trees

Problem

- Given a set of strings S, preprocess it into a data structure so that a query string s can be found in S quickly.
- Algorithm 1. Input S, output D (a data structure).
- Algorithm 2. Input s, output: pointers to all occurrences of the string s in S or “not found”.

Standard Trie

- The standard trie for a set of strings S is an ordered tree such that:
 - Each node but the root is labeled with a character
 - The children of a node are alphabetically ordered
 - The paths from the external nodes to the root yield the strings of S
- Example: standard trie for the set of strings $S = \{\text{bear, bell, bid, bull, buy, sell, stock, stop}\}$

- A standard trie uses $O(n)$ space and supports searches, insertions and deletions in time $O(dm)$, where:
 - n is the total size of the strings in S,
 - m is the size of the string parameter of the operation,
 - d is the size of the alphabet.

Word Matching with a Trie

- We insert the words of the text into a trie
• Each leaf stores the occurrences of the associated word in the text

Variations
• Label edges instead of nodes
• Sentinel $\$
 – useful to avoid nested words and
 – makes one-to-one correspondence between words and leaves

Compressed Trie
• A compressed trie has internal nodes of degree at least two
• It is obtained from standard trie by compressing chains of “redundant” nodes
Compact representation of a compressed trie for an array of strings:

- Stores at the nodes ranges of indices instead of substrings
- Uses $O(s)$ space, where s is the number of strings in the array
- Serves as an auxiliary index structure

The suffix tree of a string X is the compressed trie of all the suffixes of X.

3
Compact representation of the suffix trie for a string X of size n from an alphabet of size d.

- Uses $O(n)$ space
- Supports arbitrary pattern matching queries in X in $O(dm)$ time, where m is the size of the pattern

Store

- Edge label (i, j) for every node
- Pointers to *child* and *sibling*

PATRICIA (PAT TREE)
Practical Algorithm To Retrieve Information Coded In Alphabets - introduced by D.R. Morrison in October 1968
Collapse all unary nodes

Construction of suffix trees
• Theorem [Weiner, 1973]: $T(S')$ can be constructed in $O(n)$ time.

• There are two practical algorithms that construct the suffix tree in linear time: McCreight (1976) and Ukkonen (1993).

• A simpler algorithm is the WOTD (write-only, top-down) algorithm:

1. Let X be the set of all suffixes of S.
2. Sort the suffixes in X according to their first character.
3. For each group $X(c)$ (c is a character):
 (i) if $X(c)$ is a singleton, create a leaf;
 (ii) otherwise, find the longest common prefix of the suffixes in $X(c)$, create an internal node, and recursively continue with Step 2, X being the set of remaining suffixes from $X(c)$ after splitting off the longest common prefix.

• Analysis: $O(n^2)$ worst-case time, $O(n \log n)$ expected time, $O(n)$ space.

Example

Off-line and on-line string matching

• Off-line: KMP algorithm and Z-algorithm

• $O(n + m)$ search time. No preprocessing

BR On-line algorithms using suffix trees:
Weiner, McCreight, and Ukkonen.
Preprocessing in $O(n)$ time, searching in $O(m)$ time.

• Donald Knuth regarded Weiners paper as the most important discovery in algorithms in 1973 (In 1970 Knuth conjectured that a linear-time algorithm would be impossible).

Ukkonen algorithm
Constructs an implicit suffix tree T_i for each prefix $S[1..i]$ of S.

Starts from T_1 and increments i by 1 until T_m is built. Extension.

Naïve approach takes cubic time.

Wiener algorithm

Starts with the string $\$.

Adds one suffix at a time in increasing order of length.

Naïve approach takes $O(m)$ time for the insertion. Look at example [Wiener algorithm]

Applications of suffix trees

- On-line exact string matching
- Substring search in a database
- Longest common substring of two strings
- Recognizing DNA contamination
- Common substring of more than 2 strings
- Matching statistics
- Repeats

Search in database Preprocess a database of strings with total length m so that all occurrences of a query string can be found quickly.

- Generalized suffix tree.

- The space is $O(m)$. The query time is $O(n)$ where n is the length of query string.

Generalized Suffix Tree

Suffix tree for the strings ABAB and BABA:
Longest common substring of 2 strings

Problem: Given two strings S_1 and S_2, find the longest string s that is a substring of S_1 and S_2.

Example: ATAGTTAGGTAAATG and TAGTATTAGGTATT

- Generalized suffix tree
- Node labels:
 1. if all leaves below have suffixes of S_1 only
 2. if all leaves below have suffixes of S_2 only
 3. if there is a leaf below with suffix of S_1 and there is a leaf with suffix of S_2

- Labeling in $O(|S_1| + |S_2|)$ time

Recognizing DNA contamination

- Important Problem: Given a string S_1 (newly isolated and sequenced string of DNA) and a known string S_2 (the combined sources of possible contamination), find all substrings of S_2 that occur in S_1 and that are longer than some given length l.

- These substrings are candidates for unwanted pieces of S_2 that have contaminated the desired DNA string.
- Generalized suffix tree with labeling.
- Traverse tree and report nodes labeled 3 and whose strings have length at least l.

Common substring of > 2 strings

- Suppose we have K strings whose lengths sum to n. For each k between 2 and K, we define $l(k)$ to be the length of the longest substring common to at least k of the strings.

- Example: one,done,none,moon,nonempty

- k $l(k)$ one substring
 - 2 4 none
 - 3 3 one
 - 4 3 one
 - 5 2 on

- Surprisingly, it can be found in linear time.
• $O(Kn)$ solution: Generalized suffix tree. Each string is given a distinct termination symbol. Let $C(v)$ be the number of distinct termination symbols below v. Compute $V(k)$, longest substring of exactly k strings, by traversing tree. Then find $l(k)$ for all k.

Matching statistics

• T is a text of size m, P is a pattern of size n.
 Reverse problem: construct suffix tree for P to search substrings of T in P.
• $ms(i)$ matching statistics, the length of the longest prefix of $T[i..]$ that matches a substring in P.
• Example: T=mississippi, P=tissue, $ms(0) = 0, ms(1) = 3$
• $O(mn)$ time: suffix tree for P and check $T[i..i+n]$ for each i.
• Better solution using suffix links. If a node v has path-label xs where x is a character, then suffix link $s(v)$ points to a node with path-label s. Suffix links can be found in linear time.

Suffix links

ACACACAC	$\$
AC	$\$
AC	$\$
AC	$\$
ACS	$\$

More applications of suffix trees

• DNA of eukaryotes is highly repetitive (Cell or organism with membrane-bound nucleus. Eukaryotes include all organisms except viruses, bacteria, and blue-green algae)
• Repeat regions are rapidly changing hot spots in evolution.
• Vast literature on repetitive structures and their hypothesized functional and evolutionary roles: ALUs, SINEs, LINEs, microsatellites, minisatellites, ...
• Repeats are involved in several biological mechanisms, including genetically inherited diseases. e.g. Huntington’s disease
• Repeats tend to confuse sequence analysis programs and hence should be masked in a preprocessing step.

Repeats are very important when studying genomic DNA.

Repeats

Definitions:
• A pair of substrings $R = (S[i_1, j_1], S[i_2, j_2])$ is called a *repeat*.
• *exact repeat* if $S[i_1, j_1] = S[i_2, j_2]$
 Example TATGGTAATGGGT (may overlap)
- **k-mismatch repeat** if there are \(k\) mismatches between \(S[i_1, j_1]\) and \(S[i_2, j_2]\)

 \[
 \text{TATTGGTAATAGGGT}
 \]

- **k-differences repeat** if there are \(k\) differences (mismatches, insertions, deletions) between \(S[i_1, j_1]\) and \(S[i_2, j_2]\)

 \[
 \text{TATTAGGGTAATATTGGT}
 \]

Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in \(S\) in linear time.

Idea

- consider string \(S\) and its suffix tree \(T(S)\).
- repeated substrings of \(S\) correspond to internal locations in \(T(S)\).
- leaf numbers tell us positions where substrings occur.

Analysis: \(O(n + z)\) time and \(O(n)\) space where \(z = \text{|output|}\)

Finding exact repeats

- How to list the leaves below a node in time proportional to their number?
- Depth-first search DFS (BFS is OK).
- Time is proportional to the number of traversed edges. Every edge is traversed at most two times. The number of edges is at most 2 times the number of leaves.
Idea

- **Right-maximality**
 - consider only internal nodes of $T(S)$
 - report only pairs of leaves from different subtrees (or from different leaf-lists)

- **Left-maximality**
 - keep lists for the different left-characters
 - report only pairs from different lists

Analysis: $O(n + z)$ time and $O(n)$ space where $z = \vert \text{output} \vert$

Maximal repeats

- What are maximal repeats? What is the output?
- **Output1**: (i, j, k) for substrings $S[i..i + k - 1]$ and $S[j..j + k - 1]$
- **Output2**: string s (like ATAG..A) if s appeared (at least) two times as substring of S (maximal repeat!)
- Book uses output2 (and defines max repeat accordingly).
- Linear time for version 1 means $O(1)$ amortized time to report a triple. The size is $O(n^3)$. Is there a better bound?
- Version 2. Explicit output has $\Theta(n^2)$ size in worst case.
- Linear time for version 2 means compact representation of maximal repeats. Idea: a node v of suffix tree is *left diverse* if at least two leaves below have different characters left to their suffixes.
- Green letter is left character of suffix. Red number is start index of suffix.
- There are 2 internal nodes (in circles), node A and TA.
- Node A is left diverse since it has T and D below.
- Node A creates 2 max repeats: A (4,6) (2,6).
- Node TA is left diverse and creates max repeat TA (3,1).
- Note that A (4,2) is not max repeat since 4 and 2 have the same left character T.
k-mismatch problem

- Given a pattern P of length n, a text T of length m, and a parameter k, a *k-mismatch* of P is a n-length substring of T that matches at least $n - k$ characters of P.

- Examples:
 - $T=\text{whatever}$, $P=\text{whenever}$, $k=2$, k-mismatch is *whatever*.
 - $T=\text{whowhowho}$, $P=\text{what}$, 2-mismatch is *whow*.

- Algorithm: counting mismatches in suffix tree.

Longest Common Extension (LCE)

- Preprocess strings S_1 and S_2 such that the following queries can be computed in $O(1)$ time each:
 - Given index pair (i, j), find the length of the longest substring of S_1 starting at position i that matches a substring of S_2 starting at position j.

- Example
 - $S_1: \ldots \text{abcdzzz} \ldots$
 - $S_2: \ldots \text{abcdefg} \ldots$

- Runtime $O(km)$.

Suppose that LCE query takes $O(1)$ time.

Solution of k-mismatch problem with runtime $O(km)$:

- For each $i = 1$ to $m - n + 1$ test if P aligned at $T[i..m]$ is a k-mismatch as follows.
 1. $\text{count} = 0$; $i = i$; $j = 1$
 2. $l = \text{LCE}(I, j)$ // longest common extension of $T[i..m]$ and $P[j..m]$
 3. If $j + l = n + 1$ then "k-mismatch at position i" (actually only count mismatches occur)
 4. If $\text{count} \leq k$ then
 $\text{count} = \text{count} + 1$; $j = j + l + 1$; $I = I + l + 1$
 go to step 2

Lowest Common Ancestor (LCA)

- Preprocess a tree T such that the following queries can be computed fast:
 - Given vertices u and v, find their lowest common ancestor LCA.

- Harel and Tarjan 1984. Preprocess in $O(n)$ time and answer query in $O(1)$ time.

Longest Common Extension

Preprocess in $O(|S_1| + |S_2|)$ time
• Build generalized suffix tree T for S_1 and S_2.
• Preprocess T for constant-time LCA queries.
• Compute string-depth of every node.

Answer query (i, j) in $O(1)$ time

• Find LCA node v of leaves corresponding to suffix i of S_1 and suffix j of S_2.
• Return string-depth(v).