Phylogenetic trees

The only figure from Darwin’s “The Origin of Species”

Summary of Darwin's theory of evolution:

1. Species are not fixed
2. Common descent
3. Multiplication of species
4. Gradualism
5. Natural selection

In 1866, Ernst Haeckel coined the word *phylogeny* and presented phylogenetic trees for most known groups of living organisms.
Tree of Life

Doolittle, 19999

About 1.7 million species described.
What we have so far:

- TreeBASE database (15,000 taxa)
- Ribosomal Database Project (RDP II) (20,000 sequences)
- The Tree of Life Project (11,000 taxa)

NSF $10 million to construct a phylogeny for the 1.7 million described species of Life
Tree building algorithms

Distance-based methods

- Input: distance data such as sequence edit distance
- Output: weighted tree with pairwise distances matching evolutionary distance
- We will consider data that is:
 - Ultrametric (section 17.1)
 - Additive but not ultrametric (section 17.2)

Maximum-parsimony methods

- Character-based methods
- Input: character data (often aligned sequences)
- Output: tree with
 - input taxa at leaves
 - Inferred taxa at internal nodes
- Goal: minimize the total cost of mutations
 - maximize parsimony.
 - seek a tree that has the minimum cost over all possible trees

Definition. Let A be a set of taxa. Let $d : A \times A \to \mathbb{R}$ be a function. Then, d is a **metric** on A if it satisfies the following properties:

- (i) For all $a, b \in A$, $d(a, b) \geq 0$ (**non-negativity**).
- (ii) For all $a, b \in A$, $d(a, b) = 0$ holds if and only if $a = b$.
- (iii) For all $a, b \in A$, $d(a, b) = d(b, a)$ (**symmetry**).
- (iv) For all $a, b, c \in A$, $d(a, b) \leq d(a, c) + d(c, b)$ (**triangle inequality**).

Definition. Let A be a set of taxa. Let $d : A \times A \to \mathbb{R}$ be a function. Then, d is **ultrametric** if it satisfies the following properties:

- (i) For all $a, b \in A$, $d(a, b) \geq 0$ (**non-negativity**).
- (ii) For all $a, b \in A$, $d(a, b) = 0$ holds if and only if $a = b$.
- (iii) For all $a, b \in A$, $d(a, b) = d(b, a)$ (**symmetry**).
- (iv) For all $a, b, c \in A$, $d(a, b) \leq \max(d(a, c), d(c, b))$ (**strong triangle** or **ultrametric inequality**).

Every ultrametric d is a metric.

Theorem. [Peter Bunemann] A metric d is ultrametric if and only if any three points a, b, c can be renamed such that

$$d(a, b) \leq d(a, c) = d(b, c).$$
Ultrametric Tree

- T has n leaves corresponding to rows and columns
- Each internal node has at least two children
- Internal nodes are labeled and each parent has larger label than any child
- $D(i, j)$ is the label of least common ancestor of i and j

\[
\begin{array}{cccccc}
A & B & C & D & E \\
\hline
A & 0 & 8 & 8 & 5 & 3 \\
B & 0 & 3 & 8 & 8 & \\
C & 0 & 8 & 8 & \\
D & 0 & 5 & \\
E & 0 & \\
\end{array}
\]

- T has n leaves corresponding to rows and columns
- Each internal node has at least two children
- Edges are weighted
- The sum of the weights on every path from the root to any leaf is the same

$D(i, j)$ is the total weight of edges on the path between i and j.

How to test for an ultrametric tree

Definition. A symmetric matrix D defines ultrametric distance if for every 3 indices i, j, k the maximum of $D(i, j)$, $D(i, k)$, $D(j, k)$ is not unique.

Theorem. A symmetric matrix D has an ultrametric tree if and only if D is ultrametric matrix.

Theorem. Every ultrametric matrix has unique ultrametric tree. It can be found in $O(n^2)$ time.

Ultrametric Tree Construction

- Sort the first row $A : 3, 5, 8$. These are the labels on the path from A to the root.
- Group the nodes using these labels.
- Recursively solve the problem in each group.
- Time is $O(n^2 \log n)$. There is a better algorithm with $O(n^2)$ runtime:
Let N be the set of taxa and i be any taxon.
Let L be an empty list of taxa.
While $N \neq \emptyset$: remove i,
find $j \in N$ minimizing $D(i, k)$, $k \in N$,
add j to L and set i to j.

Additive-distance trees

- T has n leaves corresponding to rows and columns
- Each edge has a label
- $D(i, j)$ is the total weight of the path between i and j

Tree construction

- Given a symmetric matrix with diagonal entries equal 0, find an additive tree if any.
- Two versions. Rows and columns correspond to a) leaves, b) all nodes of T. There are algorithms for a) with $O(n^2)$ time.
- We consider case b), compact additive tree.

Theorem. Compact additive tree T for D is the unique minimum spanning tree of $G(D)$ (complete graph whose edge weighs are from from D).
We assume that $D(x, y) > 0$ if $x \neq y$.

Proof. Let T be a compact additive tree for D, and let $e = (x, y)$ be an edge of $G(D)$ not in T. Let $x_1 = x, x_2, \ldots, x_k = y$ be the xy-path in T. Then $w(x, y) = w(x_1, x_2) + \cdots + w(x_{k-1}, x_k)$ and $w(x, y) > w(x_i, x_{i+1})$ for any i.

We show that e is not in any minimum spanning tree of $G(D)$. Suppose to the contrary that e is in a MST T'.

Removal e from T' produces 2 trees T'_x and T'_y so that $x \in T'_x$ and $y \in T'_y$. There is an i such that $x_i \in T'_x$ and $x_{i+1} \in T'_y$. Add (x_i, x_{i+1}) and new tree has weight

$$w(T') - w(x, y) + w(x_i, x_{i+1}) < w'(T).$$

This contradicts that T' is a MST.

Algorithm. Given D, construct $G(D)$ and compute MST with Prim’s algorithm. We want to verify that tree distances $d(u, v) = D(u, v)$.

In Prim’s iteration, a new vertex y is discovered and a new edge (x, y) is added to the current tree T.

For each vertex $i \in T$, we check that $D(i, y) = D(i, x) + D(x, y)$.

This takes $O(n)$ time per iteration and $O(n^2)$ time overall.

Additive and ultrametric trees

Consider version a) where rows and columns of D correspond to the leaves of unknown tree.

- Let D be additive matrix and T be its additive tree. Let m_v be the max entry of D. Root T at node v.

 We “stretch” leaf edges so that v is equidistant to each leaf, i.e. add $m_v - D(v, i)$ edge distance at leaf i.

- Can we do it without knowing T?

 - Yes. $2D'(i, j) = D(i, j) + m_v - D(v, i) + m_v - D(v, j)$.

 - $D'(i, j) = m_v + (D(i, j) - D(v, i) - D(v, j))/2$.

Theorem. D is an additive if and only if D' is ultrametric.

From additive matrix D to ultrametric matrix D'
• Let T'' be the ultrametric tree of D'.

 • Label every edge (p, q) by the difference of the numbers at p and q (the numbers at leaves are 0).

 • For every leaf i, subtract $m_v - D(v, i)$ from its incident edge.

UPGMA

UPGMA stands for Unweighted Pair Group Method with Arithmetic Means.

 • A simple method for hierarchical clustering
• UPGMA has \(n - 1 \) iterations for given \(n \) taxa
• Iteration: find two closest clusters and join them
• Distance between clusters \(A \) and \(B \) is the mean distance
\[
d(A, B) = \frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a, b)
\]

Good news
• It computes ultrametric tree if it exists
• There is an \(O(n^2) \)-time algorithm

Bad news: it may not find an additive tree even for \(n = 4 \)

Neighbor-joining algorithm

Main iteration
1. Given \(n \) clusters (rooted trees) and the current distances \(d_{i,j} \),
calculate \(r_i = \sum_{k=1}^{n} d_{i,k} \) and matrix \(Q_{i,j} = (n - 2)d_{i,j} - r_i - r_j \).
2. Find the pair of taxa \((i, j)\) in \(Q \) with the lowest value.
 Create a node \(u \) joining \(T_i \) and \(T_j \).
 Set edge weights \(w_{i,u} = \frac{1}{2}d_{i,j} + \frac{1}{2(n - 2)}(r_i - r_j) \) and \(w_{j,u} = d_{i,j} - w_{i,u} \).
3. Update d by adding u with $d_{u,k} = \frac{1}{2}(d_{i,k} + d_{j,k} - d_{i,j})$ and removing i and j.

Example: http://www.utdallas.edu/~sxb027100/NJ.pdf

Advantages of Neighbor-joining method

- is fast and thus suited for large datasets and for bootstrap analysis
- permits lineages with largely different branch lengths
- permits correction for multiple substitutions

Disadvantages

- sequence information is reduced
- gives only one possible tree
- strongly dependent on the model of evolution used

Parsimony

- Based on attributes or characters that objects may possess.
- **Definition.** M is $n \times m$ binary matrix representing n objects in terms of m traits. Phylogenetic tree for M:
 - Each of n objects labels exactly one leaf
 - Each of m traits labels exactly one edge
 - The characters of an object p (row in M) are the characters on the path from leaf p to the root.

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Interpretation of the tree based on biological assumptions:

- The root represents an ancestor without traits
- Each trait status changes from NO to YES exactly once and never changes later.

Perfect phylogeny

- Given M, find a phylogenetic tree T for M if any.
- Sort columns in decreasing order.
- Let O_k be the set of taxa with 1 in column k (set of taxa that have kth trait).

Theorem. Matrix M has a phylogenetic tree if and only if for any pair i, j either O_i and O_j are disjoint or one contains the other.

Proof. \Rightarrow Let T be a phylogenetic tree for M and let e_i and e_j be two edges of T with characters i and j. There are 4 cases.

1. $e_i = e_j$. Then $O_i = O_j$.
2. e_i is on the path from e_j to the root. Then $O_j \subseteq O_i$.
3. e_j is on the path from e_i to the root. Then $O_i \subseteq O_j$.
4. The paths from e_i and e_j to the root meet at some vertex. Then $O_i \cap O_j = \emptyset$.

Proof. \Leftarrow Sort traits so that $|O_i|$ is increasing sequence.

Let x be a taxon and i_1, \ldots, i_k be its traits.

The sets O_{i_1}, \ldots, O_{i_k} contain x (no two sets are disjoint). Then

$$O_{i_1} \subset O_{i_2} \subset \cdots \subset O_{i_k}.$$
Algorithm

- Sort columns using radix sort making M'.
- For each row p, construct the string of characters it possesses (in increasing order).
- Build the keyword tree T for n strings.
- Test whether T is a perfect phylogeny for M.

Runtime $O(mn)$.

Tree Compatibility

We assume more general trees: a leaf can be labeled by many taxa. “Reduced form” of a tree: binary tree and only root can have one child.

Definition. A phylogenetic tree T' is a refinement of T if T can be obtained by a series of contractions of edges of T'.

If T' refines T then T' agrees with all the evolutionary history displayed in T.

Definition. Trees T_1 and T_2 are compatible is there exists a phylogenetic tree T_3 refining both T_1 and T_2.
Tree compatibility problem. Given two trees T_1 and T_2, determine whether the two trees are compatible, and if so, produce a refinement tree T_3.

Let M_1 be a 0-1 matrix with one row for each object and one column for each internal node j in T_1. Entry (i, j) of M_1 has value one if and only if the leaf for object i is found below node j.

Matrix M_2 is similarly defined for T_2. M_3 is the union of columns of M_1 and M_2.

Theorem. T_1 and T_2 are compatible if and only if there is a phylogenetic tree for M_3. Further, a phylogenetic tree for M_3 is a refinement of both T_1 and T_2.

Theorem reduces tree compatibility to perfect phylogeny.
The algorithm takes $O(n^2)$ time.

Can we detect tree compatibility faster? Yes. Idea: find common subtree $T'_1 = T'_2$.

For each node find smallest object.
Find largest common subtree. Check that the sets at leaves are the same.

Theorem. Tree compatibility can be detected in $O(n)$ time. A refinement of two trees can be computed in $O(n)$ time.
Perfect phylogeny and ultrametric problem

Perfect phylogeny can be solved using ultrametric tree.

Definition. Let n be the number of taxa and m be the number of traits. Given $n \times m$ matrix M, define $n \times n$ matrix D_M: $D_M(p, q)$ is the number of characters both p and q possess. $D_M(p, q)$ equals the number of columns i such that $M(p, i) = M(q, i) = 1$.

Lemma. If M has a perfect phylogeny then D_M is a min-ultrametric matrix.

Proof. Let T be a perfect phylogeny for M. Label nodes of T in top-down manner: label root as 0 and label a node v with the number of its parent u plus the number of characters labeling (u, v). The lowest common ancestor of p and q has label $D_M(p, q)$. □

Is it true that M has a perfect phylogeny if D_M is a min-ultrametric matrix? No.

Algorithm

1. Create D_M from M.
2. Test if D_M is min-ultrametric. If not then print “M has no perfect phylogeny” and return. Otherwise compute a min-ultrametric tree T' for D_M.
3. Try to label the edges of T' with m characters, converting T' into a perfect phylogeny for M. If this fails then M has no perfect phylogeny; otherwise T'' is the perfect phylogeny.