Homework 5

Problem 1. Floyd-Warshall
Recall that an $n \times n$ matrix W represents the edge weights in the Floyd-Warshall algorithm. Suppose that we want to compute a matrix $L[1..n][1..n]$ where $L[i][j]$ is the number of edges in a shortest path from i to j. Explain how to modify the Floyd-Warshall algorithm to compute matrix $L[..][..]$ in $O(n^3)$ time.

Problem 2. Max flow
There are n undergraduate students and k departments at some university. The Student Senate must have k students, one from each department. It also should have k_1 freshmen, k_2 sophomores, k_3 juniors, and k_4 seniors where $k_1 + k_2 + k_3 + k_4 = k$. The task is to decide if the Student Senate can be formed. If it can be formed, find a solution with k students. Design an algorithm for this task using max flow.

Problem 3. Max flow/min cut
Let G be the graph shown below.
(a) Enumerate all cuts in G and show their capacities.
(b) Find minimum cuts in G. Also find a maximum cut (a cut with maximum capacity).
(c) Find max flow in G using Ford-Fulkerson algorithm. Show the flow value and the corresponding (augmenting) paths.

Problem 4. Max flow/min cut
Suppose that the max flow value of a graph G is greater than zero. An edge (u, v) of G is called essential if decreasing $c(u, v)$ by any small amount results in a decrease in the maximum flow value.
(a) Show that G has an essential edge.
(b) Design an efficient algorithm for finding an essential edge in G.

Problem 5. NP-completeness
Show that, if languages L_1, L_2 are in P then $L_1 \cap L_2$ and L_1L_2 are also in P.

![Graph Diagram]