Homework 6

Problem 1. Show that, if languages L_1, L_2 are in P then $L_1 \cap L_2$ and $L_1 L_2$ are also in P.

Problem 2. (a) Can a bipartite graph with 8 vertices be hamiltonian? Show an example or prove that any such graph is not hamiltonian.
(b) Can a bipartite graph with 11 vertices be hamiltonian? Show an example or prove that any such graph is not hamiltonian.

Problem 3. A problem APPROX-SAT is defined as follows. Given a CNF formula ϕ with $k \geq 2$ clauses C_1, \ldots, C_k and n variables x_1, \ldots, x_n, is there an assignment of the variables such that exactly $k - 1$ clauses are true.
(a) Prove that APPROX-SAT is in NP.
(b) Prove that 3-SAT \leq_P APPROX-SAT.

Problem 4. Suppose that HAM-CYCLE is in P and a graph G is hamiltonian. Show that a hamiltonian cycle in G can be computed in polynomial time.

Problem 5. A Hamiltonian path in a graph G is a simple path that contains all the vertices of G.
HAM-CYCLE problem: Given a graph G, is there a Hamiltonian path in G?
Prove that HAM-PATH \leq_P HAM-CYCLE.