Sorting Networks

inputs

outputs

sorted
Comparator (2-sorter)

inputs

outputs

\(x \)
\(y \)

\(\text{C} \)

\(\text{min}(x, y) \)

\(\text{max}(x, y) \)
Comparator (2-sorter)

\[
\begin{align*}
\text{inputs} & \quad \text{outputs} \\
 x & \quad \min(x, y) \\
y & \quad \max(x, y)
\end{align*}
\]
Depth

- input wire of a comparison network has depth 0
- A comparator with two input wire of depth d_x and d_y has depth $\max(d_x, d_y) + 1$
Insertion Sort Network

inputs

outputs

depth $2n - 3$
Comparison Network

9
2
269
29
6
sorted
69
2
Comparison Network

```
1 1 1 1
5 5 4 4
4 4 5 5
```

sorted
How can we verify if a network sorts all possible input sequences?
Testing with 0/1

Try all possible 0/1 sequences.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>001</td>
</tr>
</tbody>
</table>
Testing with 0/1

Try all possible 0/1 sequences.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>001</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
</tr>
</tbody>
</table>
Testing with 0/1

Try all possible 0/1 sequences.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>001</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>100</td>
<td>001</td>
</tr>
</tbody>
</table>
Testing with 0/1

Try all possible 0/1 sequences.
Testing with 0/1

Try all possible 0/1 sequences.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>001</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>100</td>
<td>001</td>
</tr>
<tr>
<td>101</td>
<td>011</td>
</tr>
<tr>
<td>110</td>
<td>101</td>
</tr>
</tbody>
</table>

not sorted!
Sorting Network?
Testing with 0/1

Try all possible 0/1 sequences.
Testing with 0/1

Try all possible 0/1 sequences.
Testing with 0/1

Try all possible 0/1 sequences.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
</tbody>
</table>
Testing with 0/1

Try all possible 0/1 sequences.

<table>
<thead>
<tr>
<th>inputs</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>001</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>100</td>
<td>001</td>
</tr>
<tr>
<td>101</td>
<td>011</td>
</tr>
<tr>
<td>110</td>
<td>011</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

all sorted!
Zero-One Principle

If a comparison network sorts all possible sequences of 0’s and 1’s correctly, then it sorts all sequences of arbitrary numbers correctly.
Lemma

Given

For a monotonically increasing function f,

$a_0 \rightarrow b_0$

$f(a_0) \rightarrow f(b_0)$

$a_1 \rightarrow b_1$

$f(a_1) \rightarrow f(b_1)$
Proof: Lemma

\[\min(a_0, a_1) \]

\[\max(a_0, a_1) \]
Proof: Lemma

\[f(a_0) \rightarrow \min(f(a_0), f(a_1)) \]

\[f(a_1) \rightarrow \max(f(a_0), f(a_1)) \]
Proof: Lemma

f is monotonically increasing:

\[x \leq y \implies f(x) \leq f(y) \]

\[f(a_0) \rightarrow \min(f(a_0), f(a_1)) \]

\[f(a_1) \rightarrow \max(f(a_0), f(a_1)) \]
Proof: Lemma

\[f \text{ is monotonically increasing:} \]
\[x \leq y \implies f(x) \leq f(y) \]

\[f(a_0) \rightarrow f(\min(a_0, a_1)) \]
\[f(a_1) \rightarrow f(\max(a_0, a_1)) \]
Proof: Lemma

f is monotonically increasing:

\[x \leq y \implies f(x) \leq f(y) \]

\[f(a_0) \rightarrow f(b_0) \]

\[f(a_1) \rightarrow f(b_1) \]
Generalization

Given

\[
\begin{align*}
 a_0 & \quad b_0 & \quad c_0 & \quad d_0 \\
 a_1 & \quad b_1 & \quad c_1 & \quad d_1 \\
 a_2 & \quad b_2 & \quad c_2 & \quad d_2
\end{align*}
\]
Generalization

For a monotonically increasing function f,

(by induction)

\begin{align*}
&f(a_0) \quad f(b_0) \quad f(c_0) \quad f(d_0) \\
&f(a_1) \quad f(b_1) \quad f(c_1) \quad f(d_1) \\
&f(a_2) \quad f(b_2) \quad f(c_2) \quad f(d_2)
\end{align*}
Proof: Zero-One Principle

Suppose

a) the network sorts all sequences of 0’s and 1’s,

b) there exists a sequence $a_0, a_1, ..., a_{n-1}$ that it doesn’t sort, i.e.,

$\exists a_i, a_j$ such that $a_i < a_j$

but a_j is placed before a_i in the output.

Define

$$f(x) = \begin{cases}
0 & \text{if } x \leq a_i \\
1 & \text{otherwise}
\end{cases}$$
Proof: Zero-One Principle

\[a_0, a_1, \ldots, a_{n-1} \] → \[a_0', a_1', \ldots, a_{n-1}' \] via Sorting Network.
Proof: Zero-One Principle

Sorting Network

\[
f(a_0) \rightarrow f(a'_0) \\
f(a_1) \rightarrow f(a'_1) \\
\vdots \\
f(a_{n-1}) \rightarrow f(a'_{n-1})
\]
Proof: Zero-One Principle

\[
\begin{align*}
&\quad f(a_0) \quad \quad f(a'_0) \\
&f(a_1) \quad \quad f(a'_1) \\
&\quad \quad \quad \quad \quad \quad \quad \quad \vdots \\
&f(a_{n-1}) \quad \quad f(a'_{n-1}) \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad 0 \\
\end{align*}
\]

\{ contradiction! \}
First, we design a network that can sort only bitonic sequences.

Take a sequence that monotonically increases and then monotonically decreases and shift it circularly (shift can be 0). The result is a *bitonic sequence*.

Example: (1,4,6,8,3,2), (6,9,4,2,3,5), and (9,8,3,2,4,6) are bitonic.

Is the sequence (1,4,3,8,3,2) bitonic?
First, we design a network that can sort only bitonic sequences.

Take a sequence that monotonically increases and then monotonically decreases and shift it circularly (shift can be 0). The result is a bitonic sequence.

Example: (1,4,6,8,3,2), (6,9,4,2,3,5), and (9,8,3,2,4,6) are bitonic.

(1,4,3,8,3,2) is not bitonic.
Half-Cleaner

By 0/1 principle, it suffices to sort only bitonic 0/1 sequences.

Half-cleaner splits bitonic sequence into two bitonic sequences such that one of them is _clean_, i.e. consists of all ‘0’s or all 1’s.

Proof. Suppose that the input is 00...011...100..0 (the case 11..100..011..1 is symmetric).
What is the depth of $\text{HALF-CLEANER}[n]$?
The depth of $\text{HALF-CLEANER}[n]$ is 1.
Bitonic Sorter

Construct bitonic sorter recursively.
Bitonic Sorter

Construct bitonic sorter recursively.

What is the depth of Bitonic-Sorter[n]?
Bitonic Sorter

Construct bitonic sorter recursively.

Let $D(n)$ be the depth of $\text{Bitonic-Sorter}[n]$.

Recurrence $D(n) = D(n/2) + 1$.

Solution $D(n) = \lg n$.
Use divide-and-conquer:

- divide the sequence into two,
- sort them at the same time, and
- merge the sorted sequences into one sorted sequence.

So, we just need to create Merger[\(n\)].
Merger

Given two sorted sequences X and Y, concatenate X and reverse Y; then XY^R is bitonic sequence.

Example: $X = 00001111$, $Y = 0001111$, and $XY^R = 00001111110000$.

Idea: “reverse” wires of second half and use bitonic sorter. Better idea: instead of reversing wires, we modify the first half-cleaner of bitonic sorter.

The depth of Merger$[n]$ is $\lg n$.
What is the depth of the sorting network?

Recurrence \(D(n) = D(n/2) + \lg n. \)
What is the depth of the sorting network?

Recurrence \(D(n) = D(n/2) + \log n \).

Solution \(D(n) = \log^2 n \).
Sorting Network for $n = 4$
Sorting Network for $n = 8$

Sorter[8]:

![Diagram of a sorting network for n = 8]