Introduction to ADSL Modems

Original Lecture Notes developed by

Prof. Brian L. Evans
Dept. of Electrical and Comp. Eng.
The University of Texas at Austin
http://signal.ece.utexas.edu
Outline

- Broadband Access
 - Applications
 - Digital Subscriber Line (DSL) Standards

- ADSL Modulation Methods
 - ADSL Transceiver Block Diagram
 - Quadrature Amplitude Modulation
 - Multicarrier Modulation

- ADSL Transceiver Design
 - Inter-symbol Interference
 - Time-Domain Equalization
 - Frequency-Domain Equalization

- Conclusion

Original Lecture Notes by Prof. B. Evans
Applications of Broadband Access

<table>
<thead>
<tr>
<th>Residential Application</th>
<th>Downstream rate (kb/s)</th>
<th>Upstream rate (kb/s)</th>
<th>Willing to pay</th>
<th>Demand Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database Access</td>
<td>384</td>
<td>9</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>On-line directory; yellow pages</td>
<td>384</td>
<td>9</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Video Phone</td>
<td>1,500</td>
<td>1,500</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Home Shopping</td>
<td>1,500</td>
<td>64</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Video Games</td>
<td>1,500</td>
<td>1,500</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Internet</td>
<td>3,000</td>
<td>384</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Broadcast Video</td>
<td>6,000</td>
<td>384</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High definition TV</td>
<td>24,000</td>
<td>0</td>
<td>High</td>
<td>Medium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Application</th>
<th>Downstream rate (kb/s)</th>
<th>Upstream rate (kb/s)</th>
<th>Willing to pay</th>
<th>Demand Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line directory; yellow pages</td>
<td>384</td>
<td>9</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Financial news</td>
<td>1,500</td>
<td>9</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Video phone</td>
<td>1,500</td>
<td>1,500</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Internet</td>
<td>3,000</td>
<td>384</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Video conference</td>
<td>3,000</td>
<td>3,000</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Remote office</td>
<td>6,000</td>
<td>1,500</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>LAN interconnection</td>
<td>10,000</td>
<td>10,000</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Supercomputing, CAD</td>
<td>45,000</td>
<td>45,000</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
DSL Broadband Access

DSLAM - Digital Subscriber Line Access Multiplexer

LPF – Lowpass Filter (passes voiceband frequencies)
Spectral Compatibility of xDSL

Prof. Murat Torlak

Original Lecture Notes by Prof. B. Evans
ADSL Modem

TRANSMITTER

Bits

00110

S/P → quadrature amplitude modulation (QAM) encoder → mirror data and N-IFFT → add cyclic prefix → P/S → D/A + transmit filter

RECEIVER

N/2 subchannels N real samples

P/S → QAM demod decoder → invert channel = frequency domain equalizer → N-FFT and remove mirrored data → remove cyclic prefix → S/P → time domain equalizer (FIR filter) → receive filter + A/D → channel

Original Lecture Notes by Prof. B. Evans
Bit Manipulations

- Serial-to-parallel converter
 - Example of one input bit stream and two output words
 - Example of two input words and one output bit stream

- Parallel-to-serial converter

Original Lecture Notes by Prof. B. Evans
Prof. Murat Torlak
Quadrature Amplitude Modulation (QAM)

- One carrier
- Single signal, occupying the whole available bandwidth
- The symbol rate is the bandwidth of the signal being centered on carrier frequency

00110

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak
Multicarrier Modulation

- Divide broadband channel into narrowband subchannels
- Discrete Multitone (DMT) modulation
 - Based on fast Fourier transform (related to Fourier series)
 - Standardized for ADSL
 - Proposed for VDSL

Subchannels are 4.3 kHz wide in ADSL

Every subchannel behaves like QAM
Multicarrier Modulation by Inverse FFT

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak
Multicarrier Modulation in ADSL

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak
Multicarrier Modulation in ADSL

- **Inverse FFT**
- **N samples**
- **v samples**

ADSL Table

<table>
<thead>
<tr>
<th></th>
<th>Downstream</th>
<th>Upstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>N</td>
<td>512</td>
<td>64</td>
</tr>
</tbody>
</table>

CP: Cyclic Prefix

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak
Multicarrier Demodulation in ADSL

- \(N \)-point Fast Fourier Transform (FFT)
- \(N/2 \) subchannels (carriers)
- S/P

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak
Inter-symbol Interference (ISI)

- Ideal channel
 - Impulse response is an impulse
 - Frequency response is flat

- Non-ideal channel causes ISI
 - Channel memory
 - Magnitude and phase variation

- Received symbol is weighted sum of neighboring symbols
 - Weights are determined by channel impulse response

Threshold at zero

Original Lecture Notes by Prof. B. Evans
Channel Impulse Response

Impulse response of the Channel - 12 kft 26AWG

Amplitude vs. time samples @ 2.2 MHz

Magnitude (dBm) vs. frequency (Hz)
Cyclic Prefix Helps in Fighting ISI

- Provide guard time between successive symbols
 - No ISI if channel length is shorter than $\nu + 1$ samples
- Choose guard time samples to be a copy of the beginning of the symbol - cyclic prefix
 - Cyclic prefix converts linear convolution into circular convolution
 - Need circular convolution so that
 \[\text{symbol} \otimes \text{channel} \Leftrightarrow \text{FFT(symbol)} \times \text{FFT(channel)} \]
 - Then division by the FFT(channel) can undo channel distortion

\[\nu \text{ samples} \quad N \text{ samples} \]
Combat ISI with Time-Domain Equalizer

- Channel length is usually longer than cyclic prefix
- Use finite impulse response (FIR) filter called a time-domain equalizer to shorten channel impulse response to be no longer than cyclic prefix length

![Diagram showing channel and shortened channel impulse responses](image)
Convolution Review

- **Discrete-time convolution**
 \[y[k] = \sum_{m=-\infty}^{\infty} h[m] \times[k - m] \]

- **Continuous-time convolution**
 \[y(t) = \int_{-\infty}^{\infty} h(\tau) x(t - \tau) \, d\tau \]

- For every \(k \), we compute a new summation

- For every value of \(t \), we compute a new integral

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak
Finite Impulse Response (FIR) Filter

- Assuming that \(h[k] \) is causal and has finite duration from \(k = 0, \ldots, N-1 \)
 \[y[k] = \sum_{m=0}^{N-1} h[m] x[k-m] \]
- Block diagram of an implementation (called a finite impulse response filter)
Frequency Domain Equalizer in ADSL

- Problem: FFT coefficients (constellation points) have been distorted by the channel.

- Solution: Use Frequency-domain Equalizer (FEQ) to invert the channel.

- Implementation: N/2 single-tap filters with complex coefficients.
Frequency Domain Equalizer in ADSL

\[Y_i = c_i \tilde{X}_i \]

\[\tilde{X}_0, \tilde{X}_1, \ldots, \tilde{X}_{N/2-1} \]

\[Y_0, Y_1, Y_{N/2-1} \]

QAM decoder

Original Lecture Notes by Prof. B. Evans

Prof. Murat Torlak