Solution 3.1

- Using the simulated data for $f_m = 5$ Hz, LCR=3 and AFD=0.021 when the rms threshold is set to be -10 dB. Based on LCR and AFD equations, we find
\[N_R = 3.52 \quad \bar{\tau} = 0.0260 \]

- Using the simulated data for $f_m = 5$ Hz, LCR= 9 and AFD= 0.0055 when the rms threshold is set to be -10 dB. Based on LCR and AFD equations, we find
\[N_R = 14 \quad \bar{\tau} = 0.0065 \]
Since the simulated data is relatively short, the simulated results can be somewhat different from the theoretical results. Therefore, more simulated data should be used to match the theoretical results.

Solution 3.2

(a) Maximize capacity given by

\[
C = \max_{S(\gamma): \int S(\gamma)p(\gamma)d\gamma = S} \int B \log \left(1 + \frac{S(\gamma)\gamma}{S} \right) p(\gamma)d\gamma
\]

Construct the Langrangian function

\[
\mathcal{L} = \int B \log \left(1 + \frac{S(\gamma)\gamma}{S} \right) p(\gamma)d\gamma - \lambda \int \frac{S(\gamma)}{S} p(\gamma)d\gamma
\]