Exam is open-book, open-notes. Clearly mark results with box around. No credit for ambiguous solutions. Show derivations. Return this cover page. Good luck!

UID #:____________________________

Name:____________________________

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [50]</td>
<td></td>
</tr>
<tr>
<td>2 [50]</td>
<td></td>
</tr>
<tr>
<td>TOTAL [100]</td>
<td></td>
</tr>
</tbody>
</table>
1. [50] An active source follower circuit is shown below. Note that M1 is a PMOS whereas M2 is an NMOS. V_{BIAS} is a DC biasing voltage source. You may assume that the small-signal parameters of the four transistors are known, i.e., g_m’s and r_o’s of M1 – M4 are all known. Ignore body effect in your derivations.

1) Derive a closed-form expression for the small-signal output resistance R_o of the source follower looking into node V_o. Ignore R_{SS} in this derivation. [20]

2) Re-derive R_o of 1) including R_{SS}. Does it make a difference with or without R_{SS}? [10]

3) If there is a supply variation of Δ (i.e., $V_{DD} \rightarrow V_{DD} + \Delta$) as shown in the diagram, how much of this variation will show up on the output node V_o? Again, derive a closed-form expression for this. You can ignore R_{SS} in this derivation. [20]
2. [50] In the pseudo-differential amplifier shown below, we are trying to perform a single-ended to differential conversion by employing a feedback amplifier to stabilize the common-mode voltage at the output. You may assume that A1 is fixed, A2 is very large (i.e., $A_2 \gg 1$), and $R_3 << R_4$. The input resistances of the three op-amps are all infinite.

1) With V_x connected to ground, derive the output differential voltage ($V_{od} = V_{op} - V_{on}$) as a function of the single-ended input V_i. Determine the differential gain A_{dm}. You need to derive a close-form expression. [10]

2) Also derive an expression for the output common-mode ($V_{ocm} = 0.5*(V_{op} + V_{on})$) as a function of V_i. Determine the common-mode gain A_{cm}. What is your CMRR = $|A_{dm}/A_{cm}|$? [10]

3) With V_x connected to V_y, derive the output differential voltage again as a function of the single-ended input V_i. Determine the differential gain A_{dm}. [20]

4) Again derive an expression for the output common-mode. Determine the common-mode gain A_{cm}. What is your revised CMRR = $|A_{dm}/A_{cm}|$? Does the feedback seem to stabilize the output common mode? [10]