Exam is open-book, open-notes. Clearly mark results with box around. No credit for ambiguous solutions. Show derivations. Return this cover page. Good luck!

UID #: ____________________________

Name: ____________________________

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 [50]</td>
<td></td>
</tr>
<tr>
<td>2 [50]</td>
<td></td>
</tr>
<tr>
<td>TOTAL [100]</td>
<td></td>
</tr>
</tbody>
</table>
1. A source-degenerated PMOS differential amplifier is shown below. Assume
 \[I_d = \frac{1}{2} k' \left(\frac{W}{L} \right) (V_{gS} - V_{th})^2 \]
 \[k' = 40 \mu A/V^2 \]
 and \[\left(\frac{W}{L} \right) = 5 \]
 for \(M_1 \) and \(M_2 \) in your calculation.

 You may ignore capacitance in your calculation for low frequencies. Answer the following questions.

 1) Assuming sine-wave input drive, what input amplitude would produce 1% IM3 at the output? [30]

 2) If two identical stages of the amplifier are cascaded, repeat the calculation in 1). Take the output from the second stage. [20]
2. [50] For the active cascode amplifier shown below, assume that the auxiliary amplifier is ideal with a gain of A_a. With the output V_o attached to an AC ground, the effective transconductance G_m of the amplifier is defined as

$$G_m = \frac{I_o}{V_i}$$

Answer the following questions using the return-ratio (RR) method. Assume that g_{m1}, r_{oo}, g_{m2}, and r_{o2} are known. Ignore body effect.

1) For the feedback loop formed by A_a and $M2$, what is the RR? [10]
2) Calculate $G_{m,\infty}$ when $RR = \infty$. [10]
3) Calculate $G_{m,0}$ when $RR = 0$. [10]
4) Use the asymptotic gain formula to derive an expression for the G_m with finite A_a. [20]